No Arabic abstract
We report on our progress in the construction of a continuous matter-wave interferometer for inertial sensing via the non-destructive observation of Bloch oscillations. At the present stage of the experiment, around $10^5$ strontium-88 atoms are cooled down to below 1$mu$K and transferred to the vertical arm of the optical mode of a ring cavity. Pumped by lasers red-tuned with respect to the $7.6~$kHz broad intercombination transition of strontium, the two counterpropagating modes of the ring cavity form a one-dimensional optical lattice in which the atoms, accelerated by gravity, will perform Bloch oscillations. The atomic motion can be monitored in real-time via its impact on the counterpropagating light fields. We present the actual state of the experiment and characterize the laser spectrometer developed to drive the atom-cavity interaction.
In this paper we demonstrate a magnetically guided Cesium (Cs) atom interferometer in the Talbot-Lau regime for inertial sensing with two interferometer schemes, Mach-Zenhder and Ramsey-Borde. The recoil frequency of the Cs atoms and the acceleration along the waveguide symmetry axis is measured. An acceleration measurement uncertainty of $7times10^{-5}$ m/s$^{2}$ is achieved. We also realize an enclosed area of $0.018$ mm$^{2}$ for rotation measurement. As the first reported magnetically guided Cs atom interferometer, the system limitation and its advantages are discussed.
Very Long Baseline Atom Interferometry (VLBAI) corresponds to ground-based atomic matter-wave interferometry on large scales in space and time, letting the atomic wave functions interfere after free evolution times of several seconds or wave packet separation at the scale of meters. As inertial sensors, e.g., accelerometers, these devices take advantage of the quadratic scaling of the leading order phase shift with the free evolution time to enhance their sensitivity, giving rise to compelling experiments. With shot noise-limited instabilities better than $10^{-9}$ m/s$^2$ at 1 s at the horizon, VLBAI may compete with state-of-the-art superconducting gravimeters, while providing absolute instead of relative measurements. When operated with several atomic states, isotopes, or species simultaneously, tests of the universality of free fall at a level of parts in $10^{13}$ and beyond are in reach. Finally, the large spatial extent of the interferometer allows one to probe the limits of coherence at macroscopic scales as well as the interplay of quantum mechanics and gravity. We report on the status of the VLBAI facility, its key features, and future prospects in fundamental science.
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
We describe a method for sensing short range forces using matter wave interference in dielectric nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in reduced wave packet expansion, enabling investigations of forces nearer to surfaces in a free-fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing it by turning off the optical trap, acceleration sensing at the $10^{-8}$m/s$^2$ level is possible. The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the $5$ $mu$m length scale by a factor of $10^4$ over current limits.
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.