Do you want to publish a course? Click here

Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules

123   0   0.0 ( 0 )
 Added by Zaiping Zeng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charge-transfer excitons possessing long radiative lifetime and net permanent dipole moment are highly appealing for quantum dot (QD) based energy harvesting and photodetecting devices, in which the efficiency of charge separation after photo-excitation limits the device performance. Herein, using a hybrid time-dependent density functional theory, we have demonstrated that the prevailing rule of selecting materials with staggered type-II band alignment for realization of charge-transfer exciton breaks down in epitaxially fused QD molecules. The excitonic many-body effects are found to be significant and distinct depending on the exciton nature, causing unexpected reverse ordering of exciton states. Strikingly, twisting QD molecule appears as an effective means of modulating the orbital spatial localization towards charge separation that is mandatory for a charge-transfer exciton. Meanwhile, it manifests the intra-energy-level splitting that counterbalances the distinct many-body effects felt by excitons of different nature, thus ensuring the successful generation of energetically favourable charge-transfer exciton in both homodimer and heterodimer QD molecules. Our study extends the realm of twistroincs into zero-dimensional materials, and provides a genuine route of manipulating the exciton nature in QD molecules.



rate research

Read More

We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises a surface acoustic wave chip made from highly piezoelectric LiNbO$_3$ and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO$_3$ over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane both in the electrical and optical domain. We demonstrate enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
189 - C. Bardot , M. Schwab , M. Bayer 2005
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum dots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of $T_1$ with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of $T_2$. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules.
Many-body effect and strong Coulomb interaction in monolayer transition metal dichalcogenides lead to shrink the intrinsic bandgap, originating from the renormalization of electrical/optical bandgap, exciton binding energy, and spin-orbit splitting. This renormalization phenomenon has been commonly observed at low temperature and requires high photon excitation density. Here, we present the augmented bandgap renormalization in monolayer MoS_2 anchored on CsPbBr_3 perovskite quantum dots at room temperature via charge transfer. The amount of electrons significantly transferred from perovskite gives rise to the large plasma screening in MoS_2. The bandgap in heterostructure is red-shifted by 84 meV with minimal pump fluence, the highest bandgap renormalization in monolayer MoS_2 at room temperature, which saturates with further increase of pump fluence. We further find that the magnitude of bandgap renormalization inversely relates to Thomas-Fermi screening length. This provides plenty of room to explore the bandgap renormalization within existing vast libraries of large bandgap van der Waals heterostructure towards practical devices such as solar cells, photodetectors and light-emitting-diodes.
We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control experiments, where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently applied to Rabi oscillation experiments [A. J. Ramsay et al., Phys. Rev. Lett. 104, 017402 (2010)], but guarantees positivity of the density operator. At sufficiently low temperatures, it gives results equivalent to those of fully non-Markovian approaches [S. Luker et al., Phys. Rev. B 85, 121302 (2012)], but is significantly simpler to simulate. Several applications of this theory are discussed. We apply it to adiabatic rapid passage experiments, and show how the pulses can be shaped to maximize the probability of creating a single exciton using a frequency-swept laser pulse. We also use this theory to propose and analyze methods to determine the phonon density of states experimentally, i.e. phonon spectroscopy, by exploring the dependence of the effective damping rates on the driving field.
We analyze experimentally and theoretically the transport spectra of a gated lateral GaAs double quantum dot containing two holes. The strong spin-orbit interaction present in the hole subband lifts the Pauli spin blockade and allows to map out the complete spectra of the two-hole system. By performing measurements in both source-drain voltage directions, at different detunings and magnetic fields, we carry out quantitative fitting to a Hubbard two-site model accounting for the tunnel coupling to the leads and the spin-flip relaxation process. We extract the singlet-triplet gap and the magnetic field corresponding to the singlet-triplet transition in the double-hole ground state. Additionally, at the singlet-triplet transition we find a resonant enhancement (in the blockaded direction) and suppression of current (in the conduction direction). The current enhancement stems from the multiple resonance of two-hole levels, opening several conduction channels at once. The current suppression arises from the quantum interference of spin-conserving and spin flipping tunneling processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا