Do you want to publish a course? Click here

Spin-orbit enabled quantum transport channels in a two-hole double quantum dot

82   0   0.0 ( 0 )
 Added by Marek Korkusinski
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze experimentally and theoretically the transport spectra of a gated lateral GaAs double quantum dot containing two holes. The strong spin-orbit interaction present in the hole subband lifts the Pauli spin blockade and allows to map out the complete spectra of the two-hole system. By performing measurements in both source-drain voltage directions, at different detunings and magnetic fields, we carry out quantitative fitting to a Hubbard two-site model accounting for the tunnel coupling to the leads and the spin-flip relaxation process. We extract the singlet-triplet gap and the magnetic field corresponding to the singlet-triplet transition in the double-hole ground state. Additionally, at the singlet-triplet transition we find a resonant enhancement (in the blockaded direction) and suppression of current (in the conduction direction). The current enhancement stems from the multiple resonance of two-hole levels, opening several conduction channels at once. The current suppression arises from the quantum interference of spin-conserving and spin flipping tunneling processes.



rate research

Read More

Qubits based on the singlet (S) and the triplet (T0, T+) states in double quantum dots have been demonstrated in separate experiments. It has been recently proposed theoretically that under certain conditions a quantum interference could occur from the interplay between these two qubit species. Here we report experiments and modeling which confirm these theoretical predictions and identify the conditions under which this interference occurs. Density matrix calculations show that the interference pattern manifests primarily via the occupation of the common singlet state. The S/T0 qubit is found to have a much longer coherence time as compared to the S/T+ qubit.
158 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-potential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the Local Density of States of the dots. We study the case of small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain at the Fermi level. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory at T = 0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
98 - Zhi-Hai Liu , Rui Li , Xuedong Hu 2018
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large $g$-factor of strong SOC materials such as InSb.
A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (QDs), individually spin-polarized by ferromagnetic split-gates (FSGs). As a proof of principle, we fabricated a double QD spin valve consisting of two weakly coupled semiconducting QDs in an InAs nanowire (NW), each with independent FSGs that can be magnetized in parallel or anti-parallel. In tunneling magnetoresistance (TMR) experiments at zero external magnetic field, we find a strongly reduced spin valve conductance for the two anti-parallel configurations, with a single QD polarization of $sim 27%$. The TMR can be significantly improved by a small external field and optimized gate voltages, which results in a continuously electrically tunable TMR between $+80%$ and $-90%$. A simple model quantitatively reproduces all our findings, suggesting a gate tunable QD polarization of $pm 80%$. Such versatile spin-polarized QDs are suitable for various applications, for example in spin projection and correlation experiments in a large variety of nanoelectronics experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا