Do you want to publish a course? Click here

Controlling Segregation in Social Network Dynamics as an Edge Formation Game

106   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper studies controlling segregation in social networks via exogenous incentives. We construct an edge formation game on a directed graph. A user (node) chooses the probability with which it forms an inter- or intra- community edge based on a utility function that reflects the tradeoff between homophily (preference to connect with individuals that belong to the same group) and the preference to obtain an exogenous incentive. Decisions made by the users to connect with each other determine the evolution of the social network. We explore an algorithmic recommendation mechanism where the exogenous incentive in the utility function is based on weak ties which incentivizes users to connect across communities and mitigates the segregation. This setting leads to a submodular game with a unique Nash equilibrium. In numerical simulations, we explore how the proposed model can be useful in controlling segregation and echo chambers in social networks under various settings.



rate research

Read More

We propose a setting for two-phase opinion dynamics in social networks, where a nodes final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adoption of their respective opinions, by strategically investing on nodes in the two phases. A nodes initial opinion in the second phase naturally plays a key role in determining the final opinion of that node, and hence also of other nodes in the network due to its influence on them. More importantly, this bias also determines the effectiveness of a camps investment on that node in the second phase. To formalize this two-phase investment setting, we propose an extension of Friedkin-Johnsen model, and hence formulate the utility functions of the camps. There is a tradeoff while splitting the budget between the two phases. A lower investment in the first phase results in worse initial biases for the second phase, while a higher investment spares a lower available budget for the second phase. We first analyze the non-competitive case where only one camp invests, for which we present a polynomial time algorithm for determining an optimal way to split the camps budget between the two phases. We then analyze the case of competing camps, where we show the existence of Nash equilibrium and that it can be computed in polynomial time under reasonable assumptions. We conclude our study with simulations on real-world network datasets, in order to quantify the effects of the initial biases and the weightage attributed by nodes to their initial biases, as well as that of a camp deviating from its equilibrium strategy. Our main conclusion is that, if nodes attribute high weightage to their initial biases, it is advantageous to have a high investment in the first phase, so as to effectively influence the biases to be harnessed in the second phase.
Online social media and games are increasingly replacing offline social activities. Social media is now an indispensable mode of communication; online gaming is not only a genuine social activity but also a popular spectator sport. With support for anonymity and larger audiences, online interaction shrinks social and geographical barriers. Despite such benefits, social disparities such as gender inequality persist in online social media. In particular, online gaming communities have been criticized for persistent gender disparities and objectification. As gaming evolves into a social platform, persistence of gender disparity is a pressing question. Yet, there are few large-scale, systematic studies of gender inequality and objectification in social gaming platforms. Here we analyze more than one billion chat messages from Twitch, a social game-streaming platform, to study how the gender of streamers is associated with the nature of conversation. Using a combination of computational text analysis methods, we show that gendered conversation and objectification is prevalent in chats. Female streamers receive significantly more objectifying comments while male streamers receive more game-related comments. This difference is more pronounced for popular streamers. There also exists a large number of users who post only on female or male streams. Employing a neural vector-space embedding (paragraph vector) method, we analyze gendered chat messages and create prediction models that (i) identify the gender of streamers based on messages posted in the channel and (ii) identify the gender a viewer prefers to watch based on their chat messages. Our findings suggest that disparities in social game-streaming platforms is a nuanced phenomenon that involves the gender of streamers as well as those who produce gendered and game-related conversation.
How people connect with one another is a fundamental question in the social sciences, and the resulting social networks can have a profound impact on our daily lives. Blau offered a powerful explanation: people connect with one another based on their positions in a social space. Yet a principled measure of social distance, allowing comparison within and between societies, remains elusive. We use the connectivity kernel of conditionally-independent edge models to develop a family of segregation statistics with desirable properties: they offer an intuitive and universal characteristic scale on social space (facilitating comparison across datasets and societies), are applicable to multivariate and mixed node attributes, and capture segregation at the level of individuals, pairs of individuals, and society as a whole. We show that the segregation statistics can induce a metric on Blau space (a space spanned by the attributes of the members of society) and provide maps of two societies. Under a Bayesian paradigm, we infer the parameters of the connectivity kernel from eleven ego-network datasets collected in four surveys in the United Kingdom and United States. The importance of different dimensions of Blau space is similar across time and location, suggesting a macroscopically stable social fabric. Physical separation and age differences have the most significant impact on segregation within friendship networks with implications for intergenerational mixing and isolation in later stages of life.
218 - Aming Li , Yang-Yu Liu 2020
Network science has experienced unprecedented rapid development in the past two decades. The network perspective has also been widely applied to explore various complex systems in great depth. In the first decade, fundamental characteristics of complex network structure, such as the small-worldness, scale-freeness, and modularity, of various complex networked systems were harvested from analyzing big empirical data. The associated dynamical processes on complex networks were also heavily studied. In the second decade, more attention was devoted to investigating the control of complex networked systems, ranging from fundamental theories to practical applications. Here we briefly review recent progress regarding network dynamics and control, mainly concentrating on research questions proposed in the six papers we collected for the topical issue entitled Network Dynamics and Control at $Advances~in~Complex~Systems$. This review closes with possible research directions along this line, and several important problems to be solved. We expect that, in the near future, network control will play an even bigger role in more fields, helping us understand and control many complex natural and engineered systems.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا