Do you want to publish a course? Click here

Controlling network dynamics

219   0   0.0 ( 0 )
 Added by Aming Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Network science has experienced unprecedented rapid development in the past two decades. The network perspective has also been widely applied to explore various complex systems in great depth. In the first decade, fundamental characteristics of complex network structure, such as the small-worldness, scale-freeness, and modularity, of various complex networked systems were harvested from analyzing big empirical data. The associated dynamical processes on complex networks were also heavily studied. In the second decade, more attention was devoted to investigating the control of complex networked systems, ranging from fundamental theories to practical applications. Here we briefly review recent progress regarding network dynamics and control, mainly concentrating on research questions proposed in the six papers we collected for the topical issue entitled Network Dynamics and Control at $Advances~in~Complex~Systems$. This review closes with possible research directions along this line, and several important problems to be solved. We expect that, in the near future, network control will play an even bigger role in more fields, helping us understand and control many complex natural and engineered systems.



rate research

Read More

The spread of COVID-19 has been thwarted in most countries through non-pharmaceutical interventions. In particular, the most effective measures in this direction have been the stay-at-home and closure strategies of businesses and schools. However, population-wide lockdowns are far from being optimal carrying heavy economic consequences. Therefore, there is nowadays a strong interest in designing more efficient restrictions. In this work, starting from a recent kinetic-type model which takes into account the heterogeneity described by the social contact of individuals, we analyze the effects of introducing an optimal control strategy into the system, to limit selectively the mean number of contacts and reduce consequently the number of infected cases. Thanks to a data-driven approach, we show that this new mathematical model permits to assess the effects of the social limitations. Finally, using the model introduced here and starting from the available data, we show the effectivity of the proposed selective measures to dampen the epidemic trends.
We study the derivation of generic high order macroscopic traffic models from a follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic model as the hydrodynamic limit of an Enskog-type kinetic equation. Next, we introduce in the vehicle interactions a binary control modelling the automatic feedback provided by driver-assist vehicles and we upscale such a new particle description by means of another Enskog-based hydrodynamic limit. The resulting macroscopic model is now a Generic Second Order Model (GSOM), which contains in turn a control term inherited from the microscopic interactions. We show that such a control may be chosen so as to optimise global traffic trends, such as the vehicle flux or the road congestion, constrained by the GSOM dynamics. By means of numerical simulations, we investigate the effect of this control hierarchy in some specific case studies, which exemplify the multiscale path from the vehicle-wise implementation of a driver-assist control to its optimal hydrodynamic design.
We investigate the formation of opinion against authority in an authoritarian society composed of agents with different levels of authority. We explore a dissenting opinion, held by lower-ranking, obedient, or less authoritative people, spreading in an environment of an affirmative opinion held by authoritative leaders. A real-world example would be a corrupt society where people revolt against such leaders, but it can be applied to more general situations. In our model, agents can change their opinion depending on their authority relative to their neighbors and their own confidence level. In addition, with a certain probability, agents can override the affirmative opinion to take the dissenting opinion of a neighbor. Based on analytic derivation and numerical simulations, we observe that both the network structure and heterogeneity in authority, and their correlation, significantly affect the possibility of the dissenting opinion to spread through the population. In particular, the dissenting opinion is suppressed when the authority distribution is very heterogeneous and there exists a positive correlation between the authority and the number of neighbors of people (degree). Except for such an extreme case, though, spreading of the dissenting opinion takes place when people have the tendency to override the authority to hold the dissenting opinion, but the dissenting opinion can take a long time to spread to the entire society, depending on the model parameters. We argue that the internal social structure of agents sets the scale of the time to reach consensus, based on the analysis of the underlying structural properties of opinion spreading.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analysed. Its main features are the inclusion of disagreement and possibility of modulating information, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and information extremism, and the effect of using multiple sources of information that can influence the system. Final consensus, especially with external information, depends highly on these factors, as numerical simulations show. When no information is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one source of information is present, consensus can be obtained, in general, only when this is extremely mild, i.e. there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low information exposure. On the contrary, when multiple information sources are allowed, consensus can emerge with an information source even when this is not extremely mild, i.e. it carries a strong message, for a large range of initial conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا