No Arabic abstract
Highly state-selective, weakly dissipative population transfer is used to irreversibly move the population of one ground state qubit level of an atomic ion to an effectively stable excited manifold with high fidelity. Subsequent laser interrogation accurately distinguishes these electronic manifolds, and we demonstrate a total qubit state preparation and measurement (SPAM) inaccuracy $epsilon_mathrm{SPAM} < 1.7 times 10^{-4}$ ($-38 mbox{ dB}$), limited by imperfect population transfer between qubit eigenstates. We show experimentally that full transfer would yield an inaccuracy less than $8.0 times 10^{-5}$ ($-41 mbox{ dB}$). The high precision of this method revealed a rare ($approx 10^{-4}$) magnetic dipole decay induced error that we demonstrate can be corrected by driving an additional transition. Since this technique allows fluorescence collection for effectively unlimited periods, high fidelity qubit SPAM is achievable even with limited optical access and low quantum efficiency.
Entanglement generation in trapped-ion systems has relied thus far on two distinct but related geometric phase gate techniques: Molmer-Sorensen and light-shift gates. We recently proposed a variant of the light-shift scheme where the qubit levels are separated by an optical frequency [B. C. Sawyer and K. R. Brown, Phys. Rev. A 103, 022427 (2021)]. Here we report an experimental demonstration of this entangling gate using a pair of $^{40}$Ca$^+$ ions in a cryogenic surface-electrode ion trap and a commercial, high-power, 532 nm Nd:YAG laser. Generating a Bell state in 35 $mu$s, we directly measure an infidelity of $6(3) times 10^{-4}$ without subtraction of experimental errors. The 532 nm gate laser wavelength suppresses intrinsic photon scattering error to $sim 1 times 10^{-5}$. This result establishes our scheme as competitive with previously demonstrated entangling gates.
In a large scale trapped atomic ion quantum computer, high-fidelity two-qubit gates need to be extended over all qubits with individual control. We realize and characterize high-fidelity two-qubit gates in a system with up to 4 ions using radial modes. The ions are individually addressed by two tightly focused beams steered using micro-electromechanical system (MEMS) mirrors. We deduce a gate fidelity of 99.49(7)% in a two-ion chain and 99.30(6)% in a four-ion chain by applying a sequence of up to 21 two-qubit gates and measuring the final state fidelity. We characterize the residual errors and discuss methods to further improve the gate fidelity towards values that are compatible with fault-tolerant quantum computation.
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
To date, the highest fidelity quantum logic gates between two qubits have been achieved with variations on the geometric-phase gate in trapped ions, with the two leading variants being the Molmer-Sorensen gate and the light-shift (LS) gate. Both of these approaches have their respective advantages and challenges. For example, the latter is technically simpler and is natively insensitive to optical phases, but it has not been made to work directly on a clock-state qubit. We present a new technique for implementing the LS gate that combines the best features of these two approaches: By using a small ($sim {rm MHz}$) detuning from a narrow (dipole-forbidden) optical transition, we are able to operate an LS gate directly on hyperfine clock states, achieving gate fidelities of $99.74(4)%$ using modest laser power at visible wavelengths. Current gate infidelities appear to be dominated by technical noise, and theoretical modeling suggests a path towards gate fidelity above $99.99%$.
In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the parameter ranges appropriate for transmon qubits in the circuit quantum electrodynamics architecture, where the system behaves essentially as a nonlinear quantum oscillator and we analyze the quantum and semi-classical dynamics. One of the central motivations is that under strong excitation tones, the nonlinear response can lead to qubit quantum state discrimination and we present initial results for the cases when the qubit and cavity are on resonance or far off-resonance (dispersive).