Do you want to publish a course? Click here

Experimental investigation of convex mixtures of Markovian and Non-Markovian single qubit channels on NISQ devices

70   0   0.0 ( 0 )
 Added by Ilya Sinayskiy
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Noisy Intermediate Scale Quantum (NISQ) devices have been proposed as a versatile tool for simulating open quantum systems. Recently, the use of NISQ devices as simulators for non-Markovian open quantum systems has helped verify the current descriptions of non-Markovianity in quantum physics. In this work, convex mixtures of channels are simulated using NISQ devices and classified as either Markovian or non-Markovian using the CP-divisibility criteria. Two cases are considered: two Markovian channels being convexly mixed to form a non-Markovian channel and vice versa. This work replicates the experiments performed in a linear optical setup, using NISQ devices, with the addition of a convex mixture of non-Markovian channels that was designed to address some of the problems faced in the experiments performed in the linear optical setup. The NISQ devices used were provided by the IBM Quantum Experience (IBM QE). The results obtained show that, using NISQ devices and within some error, convex mixtures of Markovian channels lead to a non-Markovian channel and vice versa.



rate research

Read More

The study of memory effects in quantum channels helps in developing characterization methods for open quantum systems and strategies for quantum error correction. Two main sets of channels exist, corresponding to system dynamics with no memory (Markovian) and with memory (non-Markovian). Interestingly, these sets have a non-convex geometry, allowing one to form a channel with memory from the addition of memoryless channels and vice-versa. Here, we experimentally investigate this non-convexity in a photonic setup by subjecting a single qubit to a convex combination of Markovian and non-Markovian channels. We use both divisibility and distinguishability as criteria for the classification of memory effects, with associated measures. Our results highlight some practical considerations that may need to be taken into account when using memory criteria to study system dynamics given by the addition of Markovian and non-Markovian channels in experiments.
We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic polarization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics.
The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However, sometimes a coherent partial exchange of information takes place between the system and the environment and the dynamics of the open system becomes non-Markovian. In this article we study discrete open quantum system dynamics where single evolution step consist of local unitary transformation on the open system followed by a coupling unitary between the system and the environment. We implement experimentally a local control protocol for controlling the transition from Markovian to non-Markovian dynamics.
197 - L. Mazzola , J. Piilo , 2010
We investigate the dynamics of quantum and classical correlations in a system of two qubits under local colored-noise dephasing channels. The time evolution of a single qubit interacting with its own environment is described by a memory kernel non-Markovian master equation. The memory effects of the non-Markovian reservoirs introduce new features in the dynamics of quantum and classical correlations compared to the white noise Markovian case. Depending on the geometry of the initial state, the system can exhibit frozen discord and multiple sudden transitions between classical and quantum decoherence [L. Mazzola, J. Piilo and S. Maniscalco, Phys. Rev. Lett. 104 (2010) 200401]. We provide a geometric interpretation of those phenomena in terms of the distance of the state under investigation to its closest classical state in the Hilbert space of the system.
We develop a theory of linear witnesses for detecting non-Markovianity, based on the geometric structure of the set of Choi states for all Markovian evolutions having Lindblad type generators. We show that the set of all such Markovian Choi states form a convex and compact set under the small time interval approximation. Invoking geometric Hahn-Banach theorem, we construct linear witnesses to separate a given non-Markovian Choi state from the set of Markovian Choi states. We present examples of such witnesses for dephasing channel and Pauli channel in case of qubits. We further investigate the geometric structure of the Markovian Choi states to find that they do not form a polytope. This presents a platform to consider non-linear improvement of non-Markovianity witnesses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا