Do you want to publish a course? Click here

Variational quantum eigensolver techniques for simulating carbon monoxide oxidation

87   0   0.0 ( 0 )
 Added by Aleksey Fedorov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A family of Variational Quantum Eigensolver (VQE) methods is designed to maximize the resource of existing noisy intermediate-scale quantum (NISQ) devices. However, VQE approaches encounter various difficulties in simulating molecules of industrially relevant sizes, among which the choice of the ansatz for the molecular wavefunction plays a crucial role. In this work, we push forward the capabilities of adaptive variational algorithms (ADAPT-VQE) by demonstrating that the measurement overhead can be significantly reduced via adding multiple operators at each step while keeping the ansatz compact. Within the proposed approach, we simulate a set of molecules, O$_2$, CO, and CO$_2$, participating in the carbon monoxide oxidation processes using the statevector simulator and compare our findings with the results obtained using VQE-UCCSD and classical methods. Based on these results, we estimate the energy characteristics of the chemical reaction. Our results pave the way to the use of variational approaches for solving practically relevant chemical problems.



rate research

Read More

Variational quantum eigensolver (VQE) is promising to show quantum advantage on near-term noisy-intermediate-scale quantum (NISQ) computers. One central problem of VQE is the effect of noise, especially the physical noise on realistic quantum computers. We study systematically the effect of noise for the VQE algorithm, by performing numerical simulations with various local noise models, including the amplitude damping, dephasing, and depolarizing noise. We show that the ground state energy will deviate from the exact value as the noise probability increase and normally noise will accumulate as the circuit depth increase. We build a noise model to capture the noise in a real quantum computer. Our numerical simulation is consistent with the quantum experiment results on IBM Quantum computers through Cloud. Our work sheds new light on the practical research of noisy VQE. The deep understanding of the noise effect of VQE may help to develop quantum error mitigation techniques on near team quantum computers.
Variational quantum eigensolver (VQE) is demonstrated to be the promising methodology for quantum chemistry based on near-term quantum devices. However, many problems are yet to be investigated for this methodology, such as the influences of optimization algorithm and basis size on the accuracy and efficiency for quantum computing. To address these issues, five molecules (H2, LiH, HF, N2 and F2) are studied in this work based on the VQE method using unitary coupled cluster (UCC) ansatz. The performance of the gradient optimization L-BFGS-B is compared with that of the direct search method COBYLA. The former converges more quickly, but the accuracy of energy surface is a little lower. The basis set shows a vital influence on the accuracy and efficiency. A large basis set generally provides an accurate energy surface, but induces a significant increase in computing time. The 631g basis is generally required from the energy surface of the simplest H2 molecule. For practical applications of VQE, complete active space (CAS) is suggested based on limited quantum resources. With the same number of qubits, more occupied orbitals included in CAS gives a better accuracy for the energy surface and a smaller evaluation number in the VQE optimization. Additionally, the electronic structure, such as filling fraction of orbitals, the bond strength of a molecule and the maximum nuclear charge also influences the performance of optimization, where half occupation of orbitals generally requires a large computation cost.
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O(1)$ repetitions of circuits with depth $O(1/epsilon)$, whereas each expectation estimation subroutine within VQE requires $O(1/epsilon^{2})$ samples from circuits with depth $O(1)$. We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter $alphain[0,1]$ which can exploit quantum coherence over a circuit depth of $O(1/epsilon^{alpha})$ to reduce the number of samples to $O(1/epsilon^{2(1-alpha)})$. Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian, which makes it appealing for the needs of quantum chemistry. Experimental realizations have been reported in recent years and theoretical estimates of its efficiency are a subject of intense effort. Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions with competing nearest- and next-nearest-neighbor interactions. We find that recovering the VQE solution allows one to obtain the correlation function of the ground state consistent with the exact result. We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits. Our results are consistent with the current knowledge about the barren plateaus in quantum optimization.
The variational quantum eigensolver (VQE) is a promising algorithm to compute eigenstates and eigenenergies of a given quantum system that can be performed on a near-term quantum computer. Obtaining eigenstates and eigenenergies in a specific symmetry sector of the system is often necessary for practical applications of the VQE in various fields ranging from high energy physics to quantum chemistry. It is common to add a penalty term in the cost function of the VQE to calculate such a symmetry-resolving energy spectrum, but systematic analysis on the effect of the penalty term has been lacking, and the use of the penalty term in the VQE has not been justified rigorously. In this work, we investigate two major types of penalty terms for the VQE that were proposed in the previous studies. We show a penalty term in one of the two types works properly in that eigenstates obtained by the VQE with the penalty term reside in the desired symmetry sector. We further give a convenient formula to determine the magnitude of the penalty term, which may lead to the faster convergence of the VQE. Meanwhile, we prove that the other type of penalty terms does not work for obtaining the target state with the desired symmetry in a rigorous sense and even gives completely wrong results in some cases. We finally provide numerical simulations to validate our analysis. Our results apply to general quantum systems and lay the theoretical foundation for the use of the VQE with the penalty terms to obtain the symmetry-resolving energy spectrum of the system, which fuels the application of a near-term quantum computer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا