Do you want to publish a course? Click here

Probing phonon softening in ferroelectrics by the scanning probe microwave spectroscopy

203   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microwave measurements have recently been successfully applied to measure ferroelectric materials on the nanoscale, including detection of polarization switching and ferroelectric domain walls. Here we discuss the question whether scanning probe microscopy (SPM) operating at microwave frequency can identify the changes associated with the soft phonon dynamics in a ferroic. The analytical expressions for the electric potential, complex impedance and dielectric losses are derived and analyzed, since these physical quantities are linked to experimentally-measurable properties of the ferroic. As a ferroic we consider virtual or proper ferroelectric with an optic phonon mode that softens at a Curie point. We also consider a decay mechanism linked to the conductance of the ferroic, and thus manifesting itself as the dielectric loss in the material. Our key finding is that the influence of the soft phonon dispersion on the surface potential distribution, complex impedance and dielectric losses are evidently strong in the vicinity (10-30 K) of the Curie temperature. Furthermore, we quantified how the spatial distribution and frequency spectra of the complex impedance and the dielectric losses react on the dynamics of the soft phonons near the Curie point. These results set the stage for characterization of polar phase transitions with nanoscale microwave measurements, providing a complementary approach to well established electromechanical measurements for fundamental understanding of ferroelectric properties as well as their applications in telecommunication and computing.



rate research

Read More

Polarization dynamics in ferroelectric materials are explored via the automated experiment in Piezoresponse Force Spectroscopy. A Bayesian Optimization framework for imaging is developed and its performance for a variety of acquisition and pathfinding functions is explored using previously acquired data. The optimized algorithm is then deployed on an operational scanning probe microscope (SPM) for finding areas of large electromechanical response in a thin film of PbTiO3, with metrics showing gains of ~3x in the sampling efficiency. This approach opens the pathway to perform more complex spectroscopies in SPM that were previously not possible due to time constraints and sample stability, tip wear, and/or stochastic sample damage that occurs at specific, a priori unknown spatial positions. Potential improvements to the framework to enable the incorporation of more prior information and improve efficiency further are discussed.
The graphene moire structures on metals, as they demonstrate both long (moire) and short (atomic) scale ordered structures, are the ideal systems for the application of scanning probe methods. Here we present the complex studies of the graphene/Ir(111) system by means of 3D scanning tunnelling and atomic force microscopy/spectroscopy as well as Kelvin-probe force microscopy. All results clearly demonstrate a variation of the moire and atomic scale contrasts as a function of the bias voltage as well as the distance between the scanning probe and the sample, allowing to discriminate between topographic and electronic contributions in the imaging of a graphene layer on metals. The presented results are accompanied by the state-of-the-art density functional theory calculations demonstrating the excellent agreement between theoretical and experimental data.
We present a systematic study of the Raman spectra of optical phonons in graphene monolayers under tunable uniaxial tensile stress. Both the G and 2D bands exhibit significant red shifts. The G band splits into two distinct sub-bands (G+, G-) because of the strain-induced symmetry breaking. Raman scattering from the G+ and G- bands shows a distinctive polarization dependence that reflects the angle between the axis of the stress and the underlying graphene crystal axes. Polarized Raman spectroscopy therefore constitutes a purely optical method for the determination of the crystallographic orientation of graphene.
CrBr$_{3}$ is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr$_{3}$ is in the range of 1.68-2.1 eV. However, controversial results have indicated that the band gap of CrBr$_{3}$ is possibly smaller than that. An unambiguous determination of the energy gap is critical to the correct interpretations of the experimental results of CrBr$_{3}$. Here, we present the scanning tunneling microscopy and spectroscopy (STM/S) results of CrBr$_{3}$ thin and thick flakes exfoliated onto pyropytic graphite (HOPG) surfaces and density functional theory (DFT) calculations to reveal the small energy gap (peak-to-peak energy gap to be 0.57 eV $pm$ 0.04 eV; or the onset signal energy gap to be 0.29 $pm$ 0.05 eV from dI/dV spectra). Atomic resolution topography images show the defect-free crystal structure and the dI/dV spectra exhibit multiple peak features measured at 77 K. The conduction band - valence band peak pairs in the multi-peak dI/dV spectrum agree very well with all reported optical transitions. STM topography images of mono- and bi-layer CrBr$_{3}$ flakes exhibit edge degradation due to short air exposure (~15 min) during sample transfer. The unambiguously determined small energy gap settles the controversy and is the key in better understanding CrBr$_{3}$ and similar materials.
Hard point-contact spectroscopy and scanning probe microscopy/spectroscopy are powerful techniques for investigating materials with strong expandability. To support these studies, tips with various physical and chemical properties are required. To ensure the reproducibility of experimental results, the fabrication of tips should be standardized, and a controllable and convenient system should be set up. Here a systematic methodology to fabricate various tips is proposed, involving electrochemical etching reactions. The reaction parameters fall into four categories: solution, power supply, immersion depth, and interruption. An etching system was designed and built so that these parameters could be accurately controlled. With this system, etching parameters for copper, silver, gold, platinum/iridium alloy, tungsten, lead, niobium, iron, nickel, cobalt, and permalloy were explored and standardized. Among these tips, silver and niobiums new recipes were explored and standardized. Optical and scanning electron microscopies were performed to characterize the sharp needles. Relevant point-contact experiments were carried out with an etched silver tip to confirm the suitability of the fabricated tips.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا