Do you want to publish a course? Click here

The Case for Task Sampling based Learning for Cluster Job Scheduling

330   0   0.0 ( 0 )
 Added by Akshay Jajoo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our study focuses on two key questions in comparing task-sampling-based learning (learning in space) and history-based learning (learning in time): (1) Can learning in space be more accurate than learning in time? (2) If so, can delaying scheduling the remaining tasks of a job till the completion of sampled tasks be more than compensated by the improved accuracy and result in improved job performance? Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28x, 1.56x, and 1.32x compared to the prior-art history-based predictor.



rate research

Read More

Coflow scheduling improves data-intensive application performance by improving their networking performance. State-of-the-art online coflow schedulers in essence approximate the classic Shortest-Job-First (SJF) scheduling by learning the coflow size online. In particular, they use multiple priority queues to simultaneously accomplish two goals: to sieve long coflows from short coflows, and to schedule short coflows with high priorities. Such a mechanism pays high overhead in learning the coflow size: moving a large coflow across the queues delays small and other large coflows, and moving similar-sized coflows across the queues results in inadvertent round-robin scheduling. We propose Philae, a new online coflow scheduler that exploits the spatial dimension of coflows, i.e., a coflow has many flows, to drastically reduce the overhead of coflow size learning. Philae pre-schedules sampled flows of each coflow and uses their sizes to estimate the average flow size of the coflow. It then resorts to Shortest Coflow First, where the notion of shortest is determined using the learned coflow sizes and coflow contention. We show that the sampling-based learning is robust to flow size skew and has the added benefit of much improved scalability from reduced coordinator-local agent interactions. Our evaluation using an Azure testbed, a publicly available production cluster trace from Facebook shows that compared to the prior art Aalo, Philae reduces the coflow completion time (CCT) in average (P90) cases by 1.50x (8.00x) on a 150-node testbed and 2.72x (9.78x) on a 900-node testbed. Evaluation using additional traces further demonstrates Philaes robustness to flow size skew.
The ever-increasing gap between compute and I/O performance in HPC platforms, together with the development of novel NVMe storage devices (NVRAM), led to the emergence of the burst buffer concept - an intermediate persistent storage layer logically positioned between random-access main memory and a parallel file system. Despite the development of real-world architectures as well as research concepts, resource and job management systems, such as Slurm, provide only marginal support for scheduling jobs with burst buffer requirements, in particular ignoring burst buffers when backfilling. We investigate the impact of burst buffer reservations on the overall efficiency of online job scheduling for common algorithms: First-Come-First-Served (FCFS) and Shortest-Job-First (SJF) EASY-backfilling. We evaluate the algorithms in a detailed simulation with I/O side effects. Our results indicate that the lack of burst buffer reservations in backfilling may significantly deteriorate scheduling. We also show that these algorithms can be easily extended to support burst buffers. Finally, we propose a burst-buffer-aware plan-based scheduling algorithm with simulated annealing optimisation, which improves the mean waiting time by over 20% and mean bounded slowdown by 27% compared to the burst-buffer-aware SJF-EASY-backfilling.
175 - Yuping Fan 2021
High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/NVRA), network resources, and possibly other resources. Job schedulers play a crucial role in efficient use of resources. However, traditional job schedulers are single-objective and fail to efficient use of other resources. In this paper, we propose ROME, a novel multi-dimensional job scheduling framework to explore potential tradeoffs among multiple resources and provides balanced scheduling decision. Our design leverages genetic algorithm as the multi-dimensional optimization engine to generate fast scheduling decision and to support effective resource utilization.
178 - Kai Li , Yong Wang , Meilin Liu 2014
Cloud computing is a newly emerging distributed system which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes, so that the tasks can get a balanced allocation or each tasks execution cost decreases to the minimum, or the overall system performance is optimal. Unlike task scheduling based on time or cost before, aiming at the special reliability requirements in cloud computing, we propose a non-cooperative game model for reliability-based task scheduling approach. This model takes the steady-state availability that computing nodes provide as the target, takes the task slicing strategy of the schedulers as the game strategy, then finds the Nash equilibrium solution. And also, we design a task scheduling algorithm based on this model. The experiments can be seen that our task scheduling algorithm is better than the so-called balanced scheduling algorithm.
84 - Ying Mao , Yuqi Fu , Wenjia Zheng 2020
In the past decade, we have witnessed a dramatically increasing volume of data collected from varied sources. The explosion of data has transformed the world as more information is available for collection and analysis than ever before. To maximize the utilization, various machine and deep learning models have been developed, e.g. CNN [1] and RNN [2], to study data and extract valuable information from different perspectives. While data-driven applications improve countless products, training models for hyperparameter tuning is still a time-consuming and resource-intensive process. Cloud computing provides infrastructure support for the training of deep learning applications. The cloud service providers, such as Amazon Web Services [3], create an isolated virtual environment (virtual machines and containers) for clients, who share physical resources, e.g., CPU and memory. On the cloud, resource management schemes are implemented to enable better sharing among users and boost the system-wide performance. However, general scheduling approaches, such as spread priority and balanced resource schedulers, do not work well with deep learning workloads. In this project, we propose SpeCon, a novel container scheduler that is optimized for shortlived deep learning applications. Based on virtualized containers, such as Kubernetes [4] and Docker [5], SpeCon analyzes the common characteristics of training processes. We design a suite of algorithms to monitor the progress of the training and speculatively migrate the slow-growing models to release resources for fast-growing ones. Specifically, the extensive experiments demonstrate that SpeCon improves the completion time of an individual job by up to 41.5%, 14.8% system-wide and 24.7% in terms of makespan.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا