Do you want to publish a course? Click here

ROME: A Multi-Resource Job Scheduling Framework for Exascale HPC Systems

176   0   0.0 ( 0 )
 Added by Yuping Fan
 Publication date 2021
and research's language is English
 Authors Yuping Fan




Ask ChatGPT about the research

High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/NVRA), network resources, and possibly other resources. Job schedulers play a crucial role in efficient use of resources. However, traditional job schedulers are single-objective and fail to efficient use of other resources. In this paper, we propose ROME, a novel multi-dimensional job scheduling framework to explore potential tradeoffs among multiple resources and provides balanced scheduling decision. Our design leverages genetic algorithm as the multi-dimensional optimization engine to generate fast scheduling decision and to support effective resource utilization.

rate research

Read More

Traditionally, on-demand, rigid, and malleable applications have been scheduled and executed on separate systems. The ever-growing workload demands and rapidly developing HPC infrastructure trigger the interest of converging these applications on a single HPC system. Although allocating the hybrid workloads within one system could potentially improve system efficiency, it is difficult to balance the tradeoff between the responsiveness of on-demand requests, the incentive for malleable jobs, and the performance of rigid applications. In this study, we present several scheduling mechanisms to address the issues involved in co-scheduling on-demand, rigid, and malleable jobs on a single HPC system. We extensively evaluate and compare their performance under various configurations and workloads. Our experimental results show that our proposed mechanisms are capable of serving on-demand workloads with minimal delay, offering incentives for declaring malleability, and improving system performance.
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.
355 - Menglu Yu , Chuan Wu , Bo Ji 2021
In recent years, to sustain the resource-intensive computational needs for training deep neural networks (DNNs), it is widely accepted that exploiting the parallelism in large-scale computing clusters is critical for the efficient deployments of DNN training jobs. However, existing resource schedulers for traditional computing clusters are not well suited for DNN training, which results in unsatisfactory job completion time performance. The limitations of these resource scheduling schemes motivate us to propose a new computing cluster resource scheduling framework that is able to leverage the special layered structure of DNN jobs and significantly improve their job completion times. Our contributions in this paper are three-fold: i) We develop a new resource scheduling analytical model by considering DNNs layered structure, which enables us to analytically formulate the resource scheduling optimization problem for DNN training in computing clusters; ii) Based on the proposed performance analytical model, we then develop an efficient resource scheduling algorithm based on the widely adopted parameter-server architecture using a sum-of-ratios multi-dimensional-knapsack decomposition (SMD) method to offer strong performance guarantee; iii) We conduct extensive numerical experiments to demonstrate the effectiveness of the proposed schedule algorithm and its superior performance over the state of the art.
This paper considers the scheduling of jobs on distributed, heterogeneous High Performance Computing (HPC) clusters. Market-based approaches are known to be efficient for allocating limited resources to those that are most prepared to pay. This context is applicable to an HPC or cloud computing scenario where the platform is overloaded. In this paper, jobs are composed of dependent tasks. Each job has a non-increasing time-value curve associated with it. Jobs are submitted to and scheduled by a market-clearing centralised auctioneer. This paper compares the performance of several policies for generating task bids. The aim investigated here is to maximise the value for the platform provider while minimising the number of jobs that do not complete (or starve). It is found that the Projected Value Remaining bidding policy gives the highest level of value under a typical overload situation, and gives the lowest number of starved tasks across the space of utilisation examined. It does this by attempting to capture the urgency of tasks in the queue. At high levels of overload, some alternative algorithms produce slightly higher value, but at the cost of a hugely higher number of starved workflows.
91 - Di Zhang , Dong Dai , Youbiao He 2019
Today high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority functions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority functions can hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous trial and error. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations, we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا