No Arabic abstract
CaFe$_{2}$O$_{4}$ is an $S=5/2$ antiferromagnet exhibiting two magnetic orders which shows regions of coexistence at some temperatures. Using a Greens function formalism, we model neutron scattering data of the spin wave excitations in this material, ellucidating the microscopic spin Hamiltonian. In doing so, we suggest that the low temperature A phase order $(uparrowuparrowdownarrowdownarrow)$ finds its origins in the freezing of antiphase boundaries created by thermal fluctuations in a parent B phase order $(uparrowdownarrowuparrowdownarrow)$. The low temperature magnetic order observed in CaFe$_{2}$O$_{4}$ is thus the result of a competition between the exchange coupling along $c$, which favors the B phase, and the single-ion anisotropy which stabilizes thermally-generated antiphase boundaries, leading to static metastable A phase order at low temperatures.
Crystal structure of spinel compound CuIr$_{2}$S$_{4}$ was examined by powder X-ray diffraction for the insulating phase below the metal-insulator transition at $T_{MI}$ = 230 K. The superstructure spots are reproduced by considering the displacement of Ir atoms. A model for the ionic ordering of Ir$^{4+}$ and Ir$^{3+}$ with the same number is proposed for the insulating phase on the basis of the structural analysis. The model suggests that the structural change at $T_{MI}$ is driven by the formation Ir$^{4+}$ dimers. In addition, we found that the superstructure spots becomes significantly weak below 60 K, without any significant effects on electric and magnetic properties. Possible mechanism for the transition is discussed.
We report inelastic neutron scattering measurements from our newly synthesized single crystals of the structurally metastable antiferromagnetic pyrochlore Yb$_{2}$Ge$_{2}$O$_{7}$. We determine the four symmetry-allowed nearest-neighbor anisotropic exchange parameters via fits to linear spin wave theory supplemented by fits of the high-temperature specific heat. The exchange parameters so-determined are strongly correlated to the values determined for the $g$-tensor components, as previously observed for the related Yb pyrochlore Yb$_{2}$Ti$_{2}$O$_{7}$. To address this issue, we directly determined the $g$-tensor from electron paramagnetic resonance of 1% Yb-doped Lu$_{2}$Ge$_{2}$O$_{7}$, thus enabling an unambiguous determination of the exchange parameters. Our results show that Yb$_{2}$Ge$_{2}$O$_{7}$ resides extremely close to the classical phase boundary between an antiferromagnetic $Gamma_5$ phase and a splayed ferromagnet phase. By juxtaposing our results with recent ones on Yb$_{2}$Ti$_{2}$O$_{7}$, our work illustrates that the Yb pyrochlore oxides represent ideal systems for studying quantum magnets in close proximity to classical phase boundaries.
$alpha$-CoV$_{2}$O$_{6}$ consists of $j_{mathrm{eff}}={1 over 2}$ Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate the magnetic periodicity in the vicinity of these plateaus. We find these steps to be characterized by metastable and spatially short-range ($xisim$ 10 $r{A}$) magnetic correlations with antiphase boundaries defining a local periodicity of $langle hat{T}^{2} rangle = uparrow downarrow$ to $langle hat{T}^{3} rangle = uparrow uparrow downarrow$, and $langle hat{T}^{4} rangle= uparrow uparrow downarrow downarrow$ or $uparrow uparrow uparrow downarrow$ spin arrangements. This shows the presence of spatially short range and metastable/hysteretic, commensurate magnetism in Ising magnetization steps.
CaFe$_{2}$O$_{4}$ is an anisotropic $S={5over 2}$ antiferromagnet with two competing $A$ ($uparrow uparrow downarrow downarrow$) and $B$ ($uparrow downarrow uparrow downarrow$) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin-waves and resemble the spectra from isolated spin-clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe$_{2}$O$_{4}$.
We use fermion mean field theory to study possible plaquette ordering in the antiferromagnetic SU(4) Heisenberg model. We find the ground state for both the square and triangular lattices to be the disconnected plaquette state. Our mean field theory gives a first order transition for plaquette ordering for the triangular lattice. Our results suggest a large number of low lying states.