No Arabic abstract
Spin superconductor (SSC) is an exciton condensate state where the spin-triplet exciton superfluidity is charge neutral while spin $2(hbar/2)$. In analogy to the Majorana zero mode (MZM) in topological superconductors, the interplay between SSC and band topology will also give rise to a specific kind of topological boundary state obeying non-Abelian braiding statistics. Remarkably, the non-Abelian geometric phase here originates from the Aharonov-Casher effect of the half-charge other than the Aharonov-Bohm effect. Such topological boundary state of SSC is bound with the vortex of electric flux gradient and can be experimentally more distinct than the MZM for being electrically charged. This theoretical proposal provides a new avenue investigating the non-Abelian braiding physics without the assistance of MZM and charge superconductor.
It has been widely believed that half quantum vortices are indispensable to realize topological stable Majorana zero modes and non-Abelian anyons in spinful superconductors/superfluids. Contrary to this wisdom, we here demonstrate that integer quantum vortices in spinful superconductors can host topologically stable Majorana zero modes because of the mirror symmetry. The symmetry protected Majorana fermions may exhibit non-Abelian anyon braiding.
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way of detecting braiding of anyons. We confirm the Abelian anyonic braiding statistics in the $ u = 7/3$ FQH state through detection of the predicted statistical phase angle of $2pi/3$, consistent with a change of the anyonic particle number by one. The $ u = 5/2$ FQH state is theoretically believed to harbor non-Abelian anyons which are Majorana, meaning that each pair of quasiparticles contain a neutral fermion orbital which can be occupied or unoccupied and hence can act as a qubit. In this case our observed statistical phase slips agree with a theoretical model where the Majoranas are strongly coupled to each other, and strongly coupled to the edge modes of the interferometer. In particular, an observed phase slip of approximately $pi$ is interpreted as a sudden flip of a qubit, or entry of a neutral fermion into the interferometer. Our results provide compelling support for the existence of non-Abelian anyons.
In this work the Aharonov-Casher (AC) phase is calculated for spin one particles in a noncommutative space. The AC phase has previously been calculated from the Dirac equation in a noncommutative space using a gauge-like technique [17]. In the spin-one, we use kemmer equation to calculate the phase in a similar manner. It is shown that the holonomy receives non-trivial kinematical corrections. By comparing the new result with the already known spin 1/2 case, one may conjecture a generalized formula for the corrections to holonomy for higher spins.
We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can show up in the correlations between different spin states of distant particles. This correlation can violate Bells inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bells inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.
We present a detailed theoretical analysis for the spectral properties of Andreev bound states in the multiterminal Josephson junctions by employing a symmetry-constrained scattering matrix approach. We find that in the synthetic five-dimensional space of superconducting phases, crossings of Andreev bands may support the non-Abelian $SU(2)$ monopoles with a topological charge characterized by the second class Chern number. We propose that these topological defects can be detected via nonlinear response measurement of the current autocorrelations. In addition, multiterminal Josephson junction devices can be tested as a hardware platform for realizing holonomic quantum computation.