Do you want to publish a course? Click here

Multi-scale Edge-based U-shape Network for Salient Object Detection

146   0   0.0 ( 0 )
 Added by Han Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep-learning based salient object detection methods achieve great improvements. However, there are still problems existing in the predictions, such as blurry boundary and inaccurate location, which is mainly caused by inadequate feature extraction and integration. In this paper, we propose a Multi-scale Edge-based U-shape Network (MEUN) to integrate various features at different scales to achieve better performance. To extract more useful information for boundary prediction, U-shape Edge Network modules are embedded in each decoder units. Besides, the additional down-sampling module alleviates the location inaccuracy. Experimental results on four benchmark datasets demonstrate the validity and reliability of the proposed method. Multi-scale Edge based U-shape Network also shows its superiority when compared with 15 state-of-the-art salient object detection methods.



rate research

Read More

Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi-scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
Salient object detection(SOD) aims at locating the most significant object within a given image. In recent years, great progress has been made in applying SOD on many vision tasks. The depth map could provide additional spatial prior and boundary cues to boost the performance. Combining the depth information with image data obtained from standard visual cameras has been widely used in recent SOD works, however, introducing depth information in a suboptimal fusion strategy may have negative influence in the performance of SOD. In this paper, we discuss about the advantages of the so-called progressive multi-scale fusion method and propose a mask-guided feature aggregation module(MGFA). The proposed framework can effectively combine the two features of different modalities and, furthermore, alleviate the impact of erroneous depth features, which are inevitably caused by the variation of depth quality. We further introduce a mask-guided refinement module(MGRM) to complement the high-level semantic features and reduce the irrelevant features from multi-scale fusion, leading to an overall refinement of detection. Experiments on five challenging benchmarks demonstrate that the proposed method outperforms 11 state-of-the-art methods under different evaluation metrics.
Salient object detection is a fundamental topic in computer vision. Previous methods based on RGB-D often suffer from the incompatibility of multi-modal feature fusion and the insufficiency of multi-scale feature aggregation. To tackle these two dilemmas, we propose a novel multi-modal and multi-scale refined network (M2RNet). Three essential components are presented in this network. The nested dual attention module (NDAM) explicitly exploits the combined features of RGB and depth flows. The adjacent interactive aggregation module (AIAM) gradually integrates the neighbor features of high, middle and low levels. The joint hybrid optimization loss (JHOL) makes the predictions have a prominent outline. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches.
Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but existing FCN based methods still suffer from continuous striding and pooling operations leading to loss of spatial structure and blurred edges. To maintain the clear edge structure of salient objects, we propose a novel Edge-guided Non-local FCN (ENFNet) to perform edge guided feature learning for accurate salient object detection. In a specific, we extract hierarchical global and local information in FCN to incorporate non-local features for effective feature representations. To preserve good boundaries of salient objects, we propose a guidance block to embed edge prior knowledge into hierarchical feature maps. The guidance block not only performs feature-wise manipulation but also spatial-wise transformation for effective edge embeddings. Our model is trained on the MSRA-B dataset and tested on five popular benchmark datasets. Comparing with the state-of-the-art methods, the proposed method achieves the best performance on all datasets.
Salient object detection (SOD) is viewed as a pixel-wise saliency modeling task by traditional deep learning-based methods. A limitation of current SOD models is insufficient utilization of inter-pixel information, which usually results in imperfect segmentation near edge regions and low spatial coherence. As we demonstrate, using a saliency mask as the only label is suboptimal. To address this limitation, we propose a connectivity-based approach called bilateral connectivity network (BiconNet), which uses connectivity masks together with saliency masks as labels for effective modeling of inter-pixel relationships and object saliency. Moreover, we propose a bilateral voting module to enhance the output connectivity map, and a novel edge feature enhancement method that efficiently utilizes edge-specific features. Through comprehensive experiments on five benchmark datasets, we demonstrate that our proposed method can be plugged into any existing state-of-the-art saliency-based SOD framework to improve its performance with negligible parameter increase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا