No Arabic abstract
Understanding human mobility is essential for many fields, including transportation planning. Currently, surveys are the primary source for such analysis. However, in the recent past, many researchers have focused on Call Detail Records (CDR) for identifying travel patterns. CDRs have shown correlation to human mobility behavior. However, one of the main issues in using CDR data is that it is difficult to identify the precise location of the user due to the low spacial resolution of the data and other artifacts such as the load sharing effect. Existing approaches have certain limitations. Previous studies using CDRs do not consider the transmit power of cell towers when localizing the users and use an oversimplified approach to identify load sharing effects. Furthermore, they consider the entire population of users as one group neglecting the differences in mobility patterns of different segments of users. This research introduces a novel methodology to user position localization from CDRs through improved detection of load sharing effects, by taking the transmit power into account, and segmenting the users into distinct groups for the purpose of learning any parameters of the model. Moreover, this research uses several methods to address the existing limitations and validate the generated results using nearly 4 billion CDR data points with travel survey data and voluntarily collected mobile data.
Recurrent Neural Networks (RNNs) are often used for sequential modeling of adverse outcomes in electronic health records (EHRs) due to their ability to encode past clinical states. These deep, recurrent architectures have displayed increased performance compared to other modeling approaches in a number of tasks, fueling the interest in deploying deep models in clinical settings. One of the key elements in ensuring safe model deployment and building user trust is model explainability. Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations by comparing high-level concepts to the networks gradients. While the technique has shown promising results in real-world imaging applications, it has not been applied to structured temporal inputs. To enable an application of TCAV to sequential predictions in the EHR, we propose an extension of the method to time series data. We evaluate the proposed approach on an open EHR benchmark from the intensive care unit, as well as synthetic data where we are able to better isolate individual effects.
Finding an optimal sensing policy for a particular access policy and sensing scheme is a laborious combinatorial problem that requires the system model parameters to be known. In practise the parameters or the model itself may not be completely known making reinforcement learning methods appealing. In this paper a non-parametric reinforcement learning-based method is developed for sensing and accessing multi-band radio spectrum in multi-user cognitive radio networks. A suboptimal sensing policy search algorithm is proposed for a particular multi-user multi-band access policy and the randomized Chair-Varshney rule. The randomized Chair-Varshney rule is used to reduce the probability of false alarms under a constraint on the probability of detection that protects the primary user. The simulation results show that the proposed method achieves a sum profit (e.g. data rate) close to the optimal sensing policy while achieving the desired probability of detection.
This paper deals with the problem of localization in a cellular network in a dense urban scenario. Global Navigation Satellite Systems typically perform poorly in urban environments, where the likelihood of line-of-sight conditions between the devices and the satellites is low, and thus alternative localization methods are required for good accuracy. We present a deep learning method for localization, based merely on pathloss, which does not require any increase in computation complexity at the user devices with respect to the device standard operations, unlike methods that rely on time of arrival or angle of arrival information. In a wireless network, user devices scan the base station beacon slots and identify the few strongest base station signals for handover and user-base station association purposes. In the proposed method, the user to be localized simply reports such received signal strengths to a central processing unit, which may be located in the cloud. For each base station we have good approximation of the pathloss at every location in a dense grid in the map. This approximation is provided by RadioUNet, a deep learning-based simulator of pathloss functions in urban environment, that we have previously proposed and published. Using the estimated pathloss radio maps of all base stations and the corresponding reported signal strengths, the proposed deep learning algorithm can extract a very accurate localization of the user. The proposed method, called LocUNet, enjoys high robustness to inaccuracies in the estimated radio maps. We demonstrate this by numerical experiments, which obtain state-of-the-art results.
This paper provides a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack (PHY, MAC and network). First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning for non-machine learning experts to understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.
Rail transportation, especially, high-speed rails (HSR), is an important infrastructure for the development of national economy and the promotion of passenger experience. Due to the large bandwidth, millimeter wave (mmWave) communication is regarded as a promising technology to meet the demand of high data rates. However, since mmWave communication has the characteristic of high attenuation, mobile relay (MR) is considered in this paper. Also, full-duplex (FD) communications have been proposed to improve the spectral efficiency. However, because of the high speed, as well as the problem of penetration loss, passengers on the train have a poor quality of service. Consequently, an effective user association scheme for HSR in mmWave band is necessary. In this paper, we investigate the user association optimization problem in mmWave mobilerelay systems where the MRs operate in the FD mode. To maximize the system capacity, we propose a cooperative user association approach based on coalition formation game, and develop a coalition formation algorithm to solve the challenging NP-hard problem. We also prove the convergence and Nashstable property of the proposed algorithm. Extensive simulations are done to show the system performance of the proposed scheme under various network settings. It is demonstrated that the proposed distributed low complexity scheme achieves a nearoptimal performance and outperforms two baseline schemes in terms of average system throughput.