Do you want to publish a course? Click here

Out-of-boundary View Synthesis Towards Full-Frame Video Stabilization

254   0   0.0 ( 0 )
 Added by Yufei Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Warping-based video stabilizers smooth camera trajectory by constraining each pixels displacement and warp stabilized frames from unstable ones accordingly. However, since the view outside the boundary is not available during warping, the resulting holes around the boundary of the stabilized frame must be discarded (i.e., cropping) to maintain visual consistency, and thus does leads to a tradeoff between stability and cropping ratio. In this paper, we make a first attempt to address this issue by proposing a new Out-of-boundary View Synthesis (OVS) method. By the nature of spatial coherence between adjacent frames and within each frame, OVS extrapolates the out-of-boundary view by aligning adjacent frames to each reference one. Technically, it first calculates the optical flow and propagates it to the outer boundary region according to the affinity, and then warps pixels accordingly. OVS can be integrated into existing warping-based stabilizers as a plug-and-play module to significantly improve the cropping ratio of the stabilized results. In addition, stability is improved because the jitter amplification effect caused by cropping and resizing is reduced. Experimental results on the NUS benchmark show that OVS can improve the performance of five representative state-of-the-art methods in terms of objective metrics and subjective visual quality. The code is publicly available at https://github.com/Annbless/OVS_Stabilization.



rate research

Read More

Existing video stabilization methods often generate visible distortion or require aggressive cropping of frame boundaries, resulting in smaller field of views. In this work, we present a frame synthesis algorithm to achieve full-frame video stabilization. We first estimate dense warp fields from neighboring frames and then synthesize the stabilized frame by fusing the warped contents. Our core technical novelty lies in the learning-based hybrid-space fusion that alleviates artifacts caused by optical flow inaccuracy and fast-moving objects. We validate the effectiveness of our method on the NUS, selfie, and DeepStab video datasets. Extensive experiment results demonstrate the merits of our approach over prior video stabilization methods.
We present an algorithm for generating novel views at arbitrary viewpoints and any input time step given a monocular video of a dynamic scene. Our work builds upon recent advances in neural implicit representation and uses continuous and differentiable functions for modeling the time-varying structure and the appearance of the scene. We jointly train a time-invariant static NeRF and a time-varying dynamic NeRF, and learn how to blend the results in an unsupervised manner. However, learning this implicit function from a single video is highly ill-posed (with infinitely many solutions that match the input video). To resolve the ambiguity, we introduce regularization losses to encourage a more physically plausible solution. We show extensive quantitative and qualitative results of dynamic view synthesis from casually captured videos.
We present a method, Neural Radiance Flow (NeRFlow),to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images. Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene. By enforcing consistency across different modalities, our representation enables multi-view rendering in diverse dynamic scenes, including water pouring, robotic interaction, and real images, outperforming state-of-the-art methods for spatial-temporal view synthesis. Our approach works even when inputs images are captured with only one camera. We further demonstrate that the learned representation can serve as an implicit scene prior, enabling video processing tasks such as image super-resolution and de-noising without any additional supervision.
We present a novel method for synthesizing both temporally and geometrically consistent street-view panoramic video from a single satellite image and camera trajectory. Existing cross-view synthesis approaches focus on images, while video synthesis in such a case has not yet received enough attention. For geometrical and temporal consistency, our approach explicitly creates a 3D point cloud representation of the scene and maintains dense 3D-2D correspondences across frames that reflect the geometric scene configuration inferred from the satellite view. As for synthesis in the 3D space, we implement a cascaded network architecture with two hourglass modules to generate point-wise coarse and fine features from semantics and per-class latent vectors, followed by projection to frames and an upsampling module to obtain the final realistic video. By leveraging computed correspondences, the produced street-view video frames adhere to the 3D geometric scene structure and maintain temporal consistency. Qualitative and quantitative experiments demonstrate superior results compared to other state-of-the-art synthesis approaches that either lack temporal consistency or realistic appearance. To the best of our knowledge, our work is the first one to synthesize cross-view images to video.
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target persons appearance and a driving video that dictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا