Do you want to publish a course? Click here

Detached Shell Carbon Stars: Tracing Thermal Pulses on the Asymptotic Giant Branch

159   0   0.0 ( 0 )
 Added by Joel Kastner
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider whether the subset of carbon-rich asymptotic giant branch (AGB) stars that exhibit detached, expanding circumstellar shells may reveal the past histories of these stars as having undergone helium shell flashes (thermal pulses) on the AGB. We exploit newly available Gaia parallaxes and photometry, along with archival infrared photometry, to obtain refined estimates of the luminosities of all (12) known detached shell carbon stars. We examine the relationship between these luminosities and the estimated dynamical ages (ejection times) of the detached shells associated with the 12 stars, which range from $sim$1000 to $sim$30000 yr. When arranged according to detached shell dynamical age, the (implied) luminosity evolution of the known detached shell carbon stars closely follows the predicted light curves of individual thermal pulses obtained from models of AGB stars. The comparison between data and models suggests that detached shell carbon stars are descended from $sim$2.5-4.0 $M_odot$ progenitors. We conclude that detached shell carbon stars may serve as effective tracers of the luminosity evolution of AGB thermal pulses.



rate research

Read More

We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $rho_{ign} approx 2.1 times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $Delta M_{rm ZAMS}$/$Delta f_{rm{ov}}approx$ 1.6 $M_{odot}$. For zero overshoot, $f_{rm{ov}}$=0.0, our models in the ZAMS mass range $approx$ 8.9 to 11 $M_{odot}$ show off-center carbon ignition. For canonical amounts of overshooting, $f_{rm{ov}}$=0.016, the off-center carbon ignition range shifts to $approx$ 7.2 to 8.8 $M_{odot}$. Only systems with $f_{rm{ov}}$ $geq 0.01$ and ZAMS mass $approx$ 7.2-8.0 $M_{odot}$ show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.
Stars evolving along the Asymptotic Giant Branch can become Carbon-rich in the final part of their evolution. They replenish the inter-stellar medium with nuclear processed material via strong radiative stellar winds. The determination of the luminosity function of these stars, even if far from being conclusive, is extremely important to test the reliability of theoretical models. In particular, strong constraints on the mixing treatment and the mass-loss rate can be derived. We present an updated Luminosity Function of Galactic Carbon Stars obtained from a re-analysis of available data already published in previous papers. Starting from available near- and mid-infrared photometric data, we re-determine the selection criteria. Moreover, we take advantage from updated distance estimates and Period-Luminosity relations and we adopt a new formulation for the computation of Bolometric Corrections. This leads us to collect an improved sample of carbon-rich sources from which we construct an updated Luminosity Function. The Luminosity Function of Galactic Carbon Stars peaks at magnitudes around -4.9, confirming the results obtained in a previous work. Nevertheless, the Luminosity Function presents two symmetrical tails instead of the larger high luminosity tail characterizing the former Luminosity Function. The derived Luminosity Function of Galactic Carbon Stars matches the indications coming from recent theoretical evolutionary Asymptotic Giant Branch models, thus confirming the validity of the choices of mixing treatment and mass-loss history. Moreover, we compare our new Luminosity Function with its counterpart in the Large Magellanic Cloud finding that the two distributions are very similar for dust-enshrouded sources, as expected from stellar evolutionary models. Finally, we derive a new fitting formula aimed to better determine Bolometric Corrections for C-stars.
This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both recent observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
294 - L. D. Matthews 2013
We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes of six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, R Peg, displays a peculiar horseshoe-shaped HI morphology with emission extended on scales up to ~1.7 pc; in this case, the circumstellar debris may have been distorted by transverse flows in the local interstellar medium. We briefly discuss our new results in the context of the entire sample of evolved stars that has been imaged in HI to date.
Eleven nearby (<300 pc), short-period (50-130 days) asymptotic giant branch (AGB) stars were observed in the CO J = (2-1) line. Detections were made towards objects that have evidence for dust production (Ks-[22] >~ 0.55 mag; AK Hya, V744 Cen, RU Crt, alpha Her). Stars below this limit were not detected (BQ Gem, eps Oct, NU Pav, II Hya, CL Hyi, ET Vir, SX Pav). Ks-[22] colour is found to trace mass-loss rate to well within an order of magnitude. This confirms existing results, indicating a factor of 100 increase in AGB-star mass-loss rates at a pulsation period of ~60 days, similar to the known superwind trigger at ~300 days. Between ~60 and ~300 days, an approximately constant mass-loss rate and wind velocity of ~3.7 x 10^-7 solar masses per year and ~8 km/s is found. While this has not been corrected for observational biases, this rapid increase in mass-loss rate suggests a need to recalibrate the treatment of AGB mass loss in stellar evolution models. The comparative lack of correlation between mass-loss rate and luminosity (for L <~ 6300 solar luminosities) suggests that the mass-loss rates of low-luminosity AGB-star winds are set predominantly by pulsations, not radiation pressure on dust, which sets only the outflow velocity. We predict that mass-loss rates from low-luminosity AGB stars, which exhibit optically thin winds, should be largely independent of metallicity, but may be strongly dependent on stellar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا