Do you want to publish a course? Click here

Pulsation-triggered dust production by asymptotic giant branch stars

80   0   0.0 ( 0 )
 Added by Iain McDonald
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Eleven nearby (<300 pc), short-period (50-130 days) asymptotic giant branch (AGB) stars were observed in the CO J = (2-1) line. Detections were made towards objects that have evidence for dust production (Ks-[22] >~ 0.55 mag; AK Hya, V744 Cen, RU Crt, alpha Her). Stars below this limit were not detected (BQ Gem, eps Oct, NU Pav, II Hya, CL Hyi, ET Vir, SX Pav). Ks-[22] colour is found to trace mass-loss rate to well within an order of magnitude. This confirms existing results, indicating a factor of 100 increase in AGB-star mass-loss rates at a pulsation period of ~60 days, similar to the known superwind trigger at ~300 days. Between ~60 and ~300 days, an approximately constant mass-loss rate and wind velocity of ~3.7 x 10^-7 solar masses per year and ~8 km/s is found. While this has not been corrected for observational biases, this rapid increase in mass-loss rate suggests a need to recalibrate the treatment of AGB mass loss in stellar evolution models. The comparative lack of correlation between mass-loss rate and luminosity (for L <~ 6300 solar luminosities) suggests that the mass-loss rates of low-luminosity AGB-star winds are set predominantly by pulsations, not radiation pressure on dust, which sets only the outflow velocity. We predict that mass-loss rates from low-luminosity AGB stars, which exhibit optically thin winds, should be largely independent of metallicity, but may be strongly dependent on stellar mass.



rate research

Read More

We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich Asymptotic Giant Branch (C-rich AGB) stars in order to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process; one is the LTE case where the vibration temperature of SiC clusters $T_{rm v}$ is equal to the gas temperature as usual, and another is the non-LTE case in which $T_{rm v}$ is assumed to be the same as the temperature of small SiC grains. The results of hydrodynamical calculations for a model with stellar parameters of mass $M_{ast}$=1.0 $M_{odot}$, luminosity $L_{ast}$=10$^{4}$ $L_{odot}$, effective temperature $T_{rm eff}$=2600 K, C/O ratio=1.4, and pulsation period $P$=650 days show the followings: In the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains and the resulting averaged mass ratio of SiC to carbon grains of $sim$ 10$^{-8}$ is too small to reproduce the value of 0.01-0.3 inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of SiC grains is inner than and/or almost identical to that of carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability $alpha_{rm s}$=0.1-1.0. The size distributions with the peak at $sim$ 0.2-0.3 $rm{mu}$m in radius cover the range of size derived from the analysis of presolar SiC grains. Thus the difference between temperatures of small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.
We present the dust ejecta of the new stellar models for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M and C-stars. In the original version of this formalism, the most efficient destruction process of silicate dust in M-giants is chemisputtering by H2 molecules. For these stars we find that dust grains can only form at relatively large radial distances (r~5 R*), where they cannot be efficiently accelerated, in agreement with other investigations. In the light of recent laboratory results, we also consider the alternative case that the condensation temperature of silicates is determined only by the competition between growth and free evaporation processes (i.e. no chemisputtering). With this latter approach we obtain dust condensation temperatures that are significantly higher (up to Tcond~1400 K) than those found when chemisputtering is included (Tcond~900 K), and in better agreement with condensation experiments. As a consequence, silicate grains can remain stable in inner regions of the circumstellar envelopes (r~2 R*), where they can rapidly grow and can be efficiently accelerated. With this modification, our models nicely reproduce the observed trend between terminal velocities and mass loss rates of Galactic M-giants. For C-stars the formalism is based on the homogeneous growth scheme where the key role is played by the carbon over oxygen excess. The models reproduce fairly well the terminal velocities of Galactic stars and there is no need to invoke changes in the standard assumptions. At decreasing metallicity the carbon excess becomes more pronounced and the efficiency of dust formation increases. This trend could be in tension with recent observational evidence in favour of a decreasing efficiency, at decreasing metallicity.
We extend the formalism presented in our recent calculations of dust ejecta from the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase, to the case of super-solar metallicity stars. The TP-AGB evolutionary models are computed with the COLIBRI code. We adopt our preferred scheme for dust growth. For M-giants, we neglect chemisputtering by H$_2$ molecules and, for C-stars we assume a homogeneous growth scheme which is primarily controlled by the carbon over oxygen excess. At super-solar metallicities, dust forms more efficiently and silicates tend to condense significantly closer to the photosphere (r~1.5 R$_*$) - and thus at higher temperatures and densities - than at solar and sub-solar metallicities (r~2-3 R$_*$). In such conditions, the hypothesis of thermal decoupling between gas and dust becomes questionable, while dust heating due to collisions plays an important role. The heating mechanism delays dust condensation to slightly outer regions in the circumstellar envelope. We find that the same mechanism is not significant at solar and sub-solar metallicities. The main dust products at super-solar metallicities are silicates. We calculate the total dust ejecta and dust-to-gas ejecta, for various values of the stellar initial masses and initial metallicities Z=0.04, 0.06. Merging these new calculations with those for lower metallicities it turns out that, contrary to what often assumed, the total dust-to-gas ejecta of intermediate-mass stars exhibit only a weak dependence on the initial metal content.
Winds of asymptotic giant branch (AGB) stars are commonly assumed to be driven by radiative acceleration of dust grains. For M-type AGB stars, the nature of the wind-driving dust species has been a matter of intense debate. A proposed source of the radiation pressure triggering the outflows is photon scattering on Fe-free silicate grains. This wind-driving mechanism requires grain radii of about 0.1 - 1 micron in order to make the dust particles efficient at scattering radiation around the stellar flux maximum. Grain size is therefore an important parameter for understanding the physics behind the winds of M-type AGB stars. We seek to investigate the diagnostic potential of scattered polarized light for determining dust grain sizes. We have developed a new tool for computing synthetic images of scattered light in dust and gas shells around AGB stars, which can be applied to detailed models of dynamical atmospheres and dust-driven winds. We present maps of polarized light using dynamical models computed with the DARWIN code. The synthetic images clearly show that the intensity of the polarized light, the position of the inner edge of the dust shell, and the size of the dust grains near the inner edge are all changing with the luminosity phase. Non-spherical structures in the dust shells can also have an impact on the polarized light. We simulate this effect by combining different pulsation phases into a single 3D structure before computing synthetic images. An asymmetry of the circumstellar envelope can create a net polarization, which can be used as diagnostics for the grain size. The ratio between the size of the scattering particles and the observed wavelength determines at what wavelengths net polarization switches direction. If observed, this can be used to constrain average particle sizes.
We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader context, our results are suitable to study the dust enrichment of the interstellar medium provided by TP-AGB stars in both nearby and high redshift galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا