Do you want to publish a course? Click here

The temperature-dependent chiral-induced spin selectivity effect: Experiments and theory

140   0   0.0 ( 0 )
 Added by Jonas Fransson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The theoretical explanation for the chiral-induced spin selectivity effect, in which electrons passage through a chiral system depends on their spin and the handedness of the system, remains vague. Although most experimental work was performed at room temperature, most of the proposed theories did not include vibrations. Here, we present temperature-dependent experiments and a theoretical model that captures all observations and provides spin polarization values that are consistent with the experimental results. The model includes vibrational contribution to the spin orbit coupling. It shows the importance of dissipation and the relation between the effect and the optical activity.



rate research

Read More

Organic materials are known to feature long spin-diffusion times, originating in a generally small spin-orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle, that attracted a lot of attention during the recent years. Here we revisit the physical origins of chiral-induced spin selectivity (CISS), and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wires axes, and is therefore quite general. Importantly, it shows that helical structure of the molecule is not necessary to observe CISS and other chiral non-helical molecules can also be considered as a potential candidates for CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where CISS effect plays an essential role.
Dispersion interactions are one of the components of van der Waals forces, which play a key role in the understanding of intermolecular interactions in many physical, chemical and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recognized that for molecules lacking an inversion center such as chiral and helical molecules, there are chirality-sensitive corrections to the dispersion forces proportional to the rotatory power known from the theory of circular dichroism and with the same distance scaling law R-6 as the London energy. The discovery of the Chirality-Induced Spin Selectivity (CISS) effect in recent years has led to an additional twist in the study of chiral molecular systems, showing a close relation between spin and molecular geometry. Motivated by it, we propose in this investigation that there may exist additional contributions to the dispersion energy related to intermolecular, induced spin-orbit (ISOC) interactions. Within a second-order perturbative approach, these forces manifest as an effective intermolecular spin-spin exchange interaction. Although they are weaker than the standard London forces, the ISOC interactions turn out to be nevertheless not negligible and display the same R$^{-6}$ distance scaling. Our results suggest that classical force field descriptions of van-der Waals interactions may require additional modifications to include the effects discussed here.
222 - J. Fransson 2019
Chirality induced spin selectivity, discovered about two decades ago in helical molecules, is a non-equilibrium effect that emerges from the interplay between geometrical helicity and spin-orbit interactions. Several model Hamiltonians building on this interplay have been proposed and while these can yield spin-polarized transport properties that agrees with experimental observations, they simultaneously depend on unrealistic values of the spin-orbit interaction parameters. It is likely, however, that a common deficit originates from the fact that all these models are uncorrelated, or, single-electron theories. Therefore, chirality induced spin selectivity is, here, addressed using a many-body approach, which allows for non-equilibrium conditions and a systematic treatment of the correlated state. The intrinsic molecular spin-polarization increases by two orders of magnitudes, or more, compared to the corresponding result in the uncorrelated model. In addition, the electronic structure responds to varying external magnetic conditions which, therefore, enables comparisons of the currents provided for different spin-polarizations in one of the (or both) leads between which the molecule is mounted. Using experimentally feasible parameters and room temperature, the obtained normalized difference between such currents may be as large as 5 - 10 % for short molecular chains, clearly suggesting the vital importance of including electron correlations when searching for explanations of the phenomenon.
The strength of the spin-orbit interaction relevant to transport in a low dimensional structure depends critically on the relative geometrical arrangement of current carrying orbitals. Recent tight-binding orbital models for spin transport in DNA-like molecules, have surmised that the band spin-orbit coupling arises from the particular angular relations between orbitals of neighboring bases on the helical chain. Such arrangement could be probed by inducing deformations in the molecule in a conductive probe AFM type setup, as it was recently reported by Kiran, Cohen and Naamancite{Kiran}. Here we report deformation dependent spin selectivity when a double strand DNA model is compressed or stretched. We find that the equilibrium geometry is not optimal with respect to the SO coupling strength and thus spin selectivity can be tuned by deformations. The latter can be increased by stretching the helical structure taking into account its elastic properties through the Poisson ratio. The spin filtering gap is also found to be tunable with uniaxial deformations.
We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SOC is $O(m^{-1})$, in which $m$ is the electron mass, and hence much larger than the conventional SOC of $O(m^{-2})$. The energy scale is estimated to be a hundred meV for a nanoscale helix. We calculate the current-induced spin polarization in a coupled-helix model as a representative of the chirality-induced spin selectivity. We find that it depends on the chirality of the helix and is of the order of $0.01 hbar$ per ${rm nm}$ when a charge current of $1~{rm mu A}$ is applied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا