Do you want to publish a course? Click here

Chirality Induced Spin Selectivity -- The Role of Electron Correlations

223   0   0.0 ( 0 )
 Added by Jonas Fransson
 Publication date 2019
  fields Physics
and research's language is English
 Authors J. Fransson




Ask ChatGPT about the research

Chirality induced spin selectivity, discovered about two decades ago in helical molecules, is a non-equilibrium effect that emerges from the interplay between geometrical helicity and spin-orbit interactions. Several model Hamiltonians building on this interplay have been proposed and while these can yield spin-polarized transport properties that agrees with experimental observations, they simultaneously depend on unrealistic values of the spin-orbit interaction parameters. It is likely, however, that a common deficit originates from the fact that all these models are uncorrelated, or, single-electron theories. Therefore, chirality induced spin selectivity is, here, addressed using a many-body approach, which allows for non-equilibrium conditions and a systematic treatment of the correlated state. The intrinsic molecular spin-polarization increases by two orders of magnitudes, or more, compared to the corresponding result in the uncorrelated model. In addition, the electronic structure responds to varying external magnetic conditions which, therefore, enables comparisons of the currents provided for different spin-polarizations in one of the (or both) leads between which the molecule is mounted. Using experimentally feasible parameters and room temperature, the obtained normalized difference between such currents may be as large as 5 - 10 % for short molecular chains, clearly suggesting the vital importance of including electron correlations when searching for explanations of the phenomenon.



rate research

Read More

Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in systems where charge transport is dominated by incoherent hopping, mediated by spin orbit and electronic exchange couplings through an intermediate charge transfer state. We derive a simple expression for the spin polarization that predicts a non-monotonic temperature dependence consistent with recent experiments. We validate this theory using approximate quantum master equations and the numerically exact hierarchical equations of motion. The proposed mechanism of chirality induced spin selectivity should apply to many chiral systems, and the ideas presented here have implications for the study of spin transport at temperatures relevant to biology, and provide simple principles for the molecular control of spins in fluctuating environments.
We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SOC is $O(m^{-1})$, in which $m$ is the electron mass, and hence much larger than the conventional SOC of $O(m^{-2})$. The energy scale is estimated to be a hundred meV for a nanoscale helix. We calculate the current-induced spin polarization in a coupled-helix model as a representative of the chirality-induced spin selectivity. We find that it depends on the chirality of the helix and is of the order of $0.01 hbar$ per ${rm nm}$ when a charge current of $1~{rm mu A}$ is applied.
294 - J. Fransson 2020
Electron exchange and correlations emerging from the coupling between ionic vibrations and electrons are addressed. Spin-dependent electron-phonon coupling originates from the spin-orbit interaction, and it is shown that such electron-phonon coupling introduces exchange splitting between the spin channels in the structure. By application of these results to a model for a chiral molecular structure mounted between metallic leads, the chirality induced spin selectivity is found to become several tens of percents using experimentally feasible parameters.
Electron transfer (ET) in biological molecules such as peptides and proteins consists of electrons moving between well defined localized states (donors to acceptors) through a tunneling process. Here we present an analytical model for ET by tunneling in DNA, in the presence of Spin-Orbit (SO) interaction, to produce a strong spin asymmetry with the intrinsic atomic SO strength in meV range. We obtain a Hamiltonian consistent with charge transport through $pi$ orbitals on the DNA bases and derive the behavior of ET as a function of the injection state momentum, the spin-orbit coupling and barrier length and strength. A highly consistent scenario arises where two concomitant mechanisms for spin selection arises; spin interference and differential spin amplitude decay. High spin filtering can take place at the cost of reduced amplitude transmission assuming realistic values for the spin-orbit coupling. The spin filtering scenario is completed by addressing the spin dependent torque under the barrier, with a consistent conserved definition for the spin current.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا