Do you want to publish a course? Click here

Adversarial Relighting against Face Recognition

162   0   0.0 ( 0 )
 Added by Ruijun Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep face recognition (FR) has achieved significantly high accuracy on several challenging datasets and fosters successful real-world applications, even showing high robustness to the illumination variation that is usually regarded as a main threat to the FR system. However, in the real world, illumination variation caused by diverse lighting conditions cannot be fully covered by the limited face dataset. In this paper, we study the threat of lighting against FR from a new angle, i.e., adversarial attack, and identify a new task, i.e., adversarial relighting. Given a face image, adversarial relighting aims to produce a naturally relighted counterpart while fooling the state-of-the-art deep FR methods. To this end, we first propose the physical model-based adversarial relighting attack (ARA) denoted as albedo-quotient-based adversarial relighting attack (AQ-ARA). It generates natural adversarial light under the physical lighting model and guidance of FR systems and synthesizes adversarially relighted face images. Moreover, we propose the auto-predictive adversarial relighting attack (AP-ARA) by training an adversarial relighting network (ARNet) to automatically predict the adversarial light in a one-step manner according to different input faces, allowing efficiency-sensitive applications. More importantly, we propose to transfer the above digital attacks to physical ARA (Phy-ARA) through a precise relighting device, making the estimated adversarial lighting condition reproducible in the real world. We validate our methods on three state-of-the-art deep FR methods, i.e., FaceNet, ArcFace, and CosFace, on two public datasets. The extensive and insightful results demonstrate our work can generate realistic adversarial relighted face images fooling FR easily, revealing the threat of specific light directions and strengths.



rate research

Read More

Most machine learning models are validated and tested on fixed datasets. This can give an incomplete picture of the capabilities and weaknesses of the model. Such weaknesses can be revealed at test time in the real world. The risks involved in such failures can be loss of profits, loss of time or even loss of life in certain critical applications. In order to alleviate this issue, simulators can be controlled in a fine-grained manner using interpretable parameters to explore the semantic image manifold. In this work, we propose a framework for learning how to test machine learning algorithms using simulators in an adversarial manner in order to find weaknesses in the model before deploying it in critical scenarios. We apply this model in a face recognition scenario. We are the first to show that weaknesses of models trained on real data can be discovered using simulated samples. Using our proposed method, we can find adversarial synthetic faces that fool contemporary face recognition models. This demonstrates the fact that these models have weaknesses that are not measured by commonly used validation datasets. We hypothesize that this type of adversarial examples are not isolated, but usually lie in connected components in the latent space of the simulator. We present a method to find these adversarial regions as opposed to the typical adversarial points found in the adversarial example literature.
Face recognition (FR) systems have been widely applied in safety-critical fields with the introduction of deep learning. However, the existence of adversarial examples brings potential security risks to FR systems. To identify their vulnerability and help improve their robustness, in this paper, we propose Meaningful Adversarial Stickers, a physically feasible and easily implemented attack method by using meaningful real stickers existing in our life, where the attackers manipulate the pasting parameters of stickers on the face, instead of designing perturbation patterns and then printing them like most existing works. We conduct attacks in the black-box setting with limited information which is more challenging and practical. To effectively solve the pasting position, rotation angle, and other parameters of the stickers, we design Region based Heuristic Differential Algorithm, which utilizes the inbreeding strategy based on regional aggregation of effective solutions and the adaptive adjustment strategy of evaluation criteria. Extensive experiments are conducted on two public datasets including LFW and CelebA with respective to three representative FR models like FaceNet, SphereFace, and CosFace, achieving attack success rates of 81.78%, 72.93%, and 79.26% respectively with only hundreds of queries. The results in the physical world confirm the effectiveness of our method in complex physical conditions. When continuously changing the face posture of testers, the method can still perform successful attacks up to 98.46%, 91.30% and 86.96% in the time series.
Existing face relighting methods often struggle with two problems: maintaining the local facial details of the subject and accurately removing and synthesizing shadows in the relit image, especially hard shadows. We propose a novel deep face relighting method that addresses both problems. Our method learns to predict the ratio (quotient) image between a source image and the target image with the desired lighting, allowing us to relight the image while maintaining the local facial details. During training, our model also learns to accurately modify shadows by using estimated shadow masks to emphasize on the high-contrast shadow borders. Furthermore, we introduce a method to use the shadow mask to estimate the ambient light intensity in an image, and are thus able to leverage multiple datasets during training with different global lighting intensities. With quantitative and qualitative evaluations on the Multi-PIE and FFHQ datasets, we demonstrate that our proposed method faithfully maintains the local facial details of the subject and can accurately handle hard shadows while achieving state-of-the-art face relighting performance.
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world face recognition applications with security-sensitive purposes. Adversarial attacks are widely studied as they can identify the vulnerability of the models before they are deployed. In this paper, we evaluate the robustness of state-of-the-art face recognition models in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire hard-label predictions by sending queries to the target model. This attack setting is more practical in real-world face recognition systems. To improve the efficiency of previous methods, we propose an evolutionary attack algorithm, which can model the local geometries of the search directions and reduce the dimension of the search space. Extensive experiments demonstrate the effectiveness of the proposed method that induces a minimum perturbation to an input face image with fewer queries. We also apply the proposed method to attack a real-world face recognition system successfully.
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recognition. Most of the general face recognition algorithms usually assume a sufficient resolution for the face images. However, in practice many applications often do not have sufficient image resolutions. The modern face hallucination models demonstrate reasonable performance to reconstruct high-resolution images from its corresponding low resolution images. However, they do not consider identity level information during hallucination which directly affects results of the recognition of low resolution faces. To address this issue, we propose a Face Hallucination Generative Adversarial Network (FH-GAN) which improves the quality of low resolution face images and accurately recognize those low quality images. Concretely, we make the following contributions: 1) we propose FH-GAN network, an end-to-end system, that improves both face hallucination and face recognition simultaneously. The novelty of this proposed network depends on incorporating identity information in a GAN-based face hallucination algorithm via combining a face recognition network for identity preserving. 2) We also propose a new face hallucination network, namely Dense Sparse Network (DSNet), which improves upon the state-of-art in face hallucination. 3) We demonstrate benefits of training the face recognition and GAN-based DSNet jointly by reporting good result on face hallucination and recognition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا