Do you want to publish a course? Click here

Plasmon in Nonsymmorphic Dirac semimetals

125   0   0.0 ( 0 )
 Added by Arijit Kundu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effect of the Coulomb interaction in a nonsymmorphic Dirac semimetal, leading to collective charge oscillation modes (plasmons), focusing on the model originally predicted by Young and Kane [Phys. Rev. Lett. 115, 126803 (2015)]. We model the system in a two-dimensional square-lattice and evaluate the density-density correlation function within the random-phase approximation (RPA) in presence of the Coulomb interaction. The non-interacting band-structure consists of three band-touching points, near which the electronic states follow Dirac equations. Two of these Dirac nodes, at the momentum points $X_1$ and $X_2$ are anisotropic, i.e, disperses with different velocities in different directions, whereas the third Dirac point at $M$ is isotropic. Interestingly we find that, the system of these three Dirac nodes hold a single low-energy plasmon mode, within its particle-hole gap, that disperses in isotropic manner, in the case when the nodes at $X_1$ and $X_2$ are related by symmetry. We also show this analytically using a long-wavelength approximation. We discuss effects of perturbations that can give rise to anisotropic plasmon dispersions and comment on possible experimental observation of our prediction.



rate research

Read More

Two-dimensional Dirac semimetals have attracted much attention because of their linear energy dispersion and non-trivial Berry phase. Graphene-like 2D Dirac materials are gapless only within certain approximations, e.g., if spin-orbit coupling (SOC) is neglected. It has recently been reported that materials with nonsymmorphic crystal lattice possess symmetry-enforced Dirac-like band dispersion around certain high-symmetry momenta even in the presence of SOC. Here we calculate the optical absorption coefficient of nonsymmorphic semimetals, such as $alpha$-bismuthene, which hosts two anisotropic Dirac cones with different Fermi velocities along $x$ and $y$ directions.We find that the optical absorption coefficient depends strongly on the anisotropy factor and the photon polarization. When a magnetic field is applied perpendicular to the plane of the material, the absorption coefficient also depends on an internal parameter we termed the mixing angle of the band structure. We further find that an in-plane magnetic field, while leaving the system gapless, can induce a Van-Hove singularity in the joint density of states: this causes a significant enhancement of the optical absorption at the frequency of the singularity for one direction of polarization but not for the orthogonal one, making the optical properties even more strongly dependent on polarization. Due to the anisotropy present in our model, the Dirac cones at two high-symmetry momenta in the Brillouin zone contribute very differently to the optical absorbance. Consequently, it might be possible to preferentially populate one valley or the other by varying photon polarization and frequency. These results suggest that nonsymmorphic 2D Dirac semimetals are excellent candidate materials for tunable magneto-optic devices.
We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a emph{global} topological charge and show that it is of $mathbb{Z}_2$ type, which is in contrast to the emph{local} topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the $pi$-flux state as well as the SSH model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the wave vector. Depending on the relative orientation of the separation of Weyl nodes in momentum space, the surface normal, and the direction of propagation, the dispersion relation of surface plasmon polaritons could be nonreciprocal even in a thin slab. In addition, strain-induced axial gauge fields can significantly affect the localization properties of the collective modes. These effects allow for an in situ control of the propagation of surface plasmon polaritons in Weyl semimetals and might be useful for creating nonreciprocal devices.
An exotic anomalous plasmon mode is found in strained Weyl semimetals utilizing the topological Landau Fermi liquid and chiral kinetic theories, in which quasiparticle interactions are modeled by long-range Coulomb and residual short-range interactions. The gapped collective mode is derived from the dynamical charge pumping between the bulk and the surface and behaves like $k_{rm F}^{-1}$. The charge oscillations are accurately determined by the coupling between the induced electric field and the background pseudofields. This novel mode unidirectionally disperses along the pseudomagnetic field and manifests itself in an unusual thermal conductivity in apparent violation of the Wiedemann-Franz law. The excitation can be achieved experimentally by mechanical vibrations of the crystal lattice in the THz regime.
Recent developments in the relationship between bulk topology and surface crystal symmetry have led to the discovery of materials whose gapless surface states are protected by crystal symmetries. In fact, there exists only a very limited set of possible surface crystal symmetries, captured by the 17 wallpaper groups. We show that a consideration of symmetry-allowed band degeneracies in the wallpaper groups can be used to understand previous topological crystalline insulators, as well as to predict new examples. In particular, the two wallpaper groups with multiple glide lines, $pgg$ and $p4g$, allow for a new topological insulating phase, whose surface spectrum consists of only a single, fourfold-degenerate, true Dirac fermion. Like the surface state of a conventional topological insulator, the surface Dirac fermion in this nonsymmorphic Dirac insulator provides a theoretical exception to a fermion doubling theorem. Unlike the surface state of a conventional topological insulator, it can be gapped into topologically distinct surface regions while keeping time-reversal symmetry, allowing for networks of topological surface quantum spin Hall domain walls. We report the theoretical discovery of new topological crystalline phases in the A$_2$B$_3$ family of materials in SG 127, finding that Sr$_2$Pb$_3$ hosts this new topological surface Dirac fermion. Furthermore, (100)-strained Au$_2$Y$_3$ and Hg$_2$Sr$_3$ host related topological surface hourglass fermions. We also report the presence of this new topological hourglass phase in Ba$_5$In$_2$Sb$_6$ in SG 55. For orthorhombic space groups with two glides, we catalog all possible bulk topological phases by a consideration of the allowed non-abelian Wilson loop connectivities, and we develop topological invariants for these systems. Finally, we show how in a particular limit, these crystalline phases reduce to copies of the SSH model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا