Do you want to publish a course? Click here

Bell-state generation for spin qubits via dissipative coupling

83   0   0.0 ( 0 )
 Added by Ji Zou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate the dynamics of two spin qubits interacting with a magnetic medium. A systematic theoretical framework for this qubit-magnet hybrid system is developed in terms of the equilibrium properties of the magnetic medium. Our particular focus is on the induced dissipative coupling between the spin qubits. In contrast to the conventional wisdom that dissipation is detrimental to quantum effects, here we show that a sizable long-lifetime entanglement can be established via a dissipative environment, in the absence of any coherent coupling. Moreover, we demonstrate that maximally-entangled two-qubit states (Bell states) can be achieved in this scheme when complemented by proper postselection. In this situation, there is a dynamical phase transition separated by an exceptional point. The resultant Bell state is robust against weak random perturbations and does not require the preparation of a particular initial state. Our study may find applications in quantum information science, quantum spintronics, and for sensing of nonlocal quantum correlations.



rate research

Read More

We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configurations of a singlet-triplet qubit and the edge modes of a quantum Hall droplet. We show that distant singlet-triplet qubits can be selectively coupled, with gate times that can be much shorter than qubit dephasing times and faster than decoherence due to coupling to the edge modes. Based on parameters from recent experiments, we argue that fidelities above 99% could in principle be achieved for a two-qubit entangling gate taking as little as 20 ns.
Gate-defined quantum dots in gallium arsenide (GaAs) have been used extensively for pioneering spin qubit devices due to the relative simplicity of fabrication and favourable electronic properties such as a single conduction band valley, a small effective mass, and stable dopants. GaAs spin qubits are readily produced in many labs and are currently studied for various applications, including entanglement, quantum non-demolition measurements, automatic tuning, multi-dot arrays, coherent exchange coupling, and teleportation. Even while much attention is shifting to other materials, GaAs devices will likely remain a workhorse for proof-of-concept quantum information processing and solid-state experiments.
135 - Li-Ping Yang , C. P. Sun 2013
The spin-orbit coupling (SOC) can mediate electric-dipole spin resonance (EDSR) in an a.c. electric field. In this letter, the EDSR is essentially understood as an spin precession under an effective a.c. magnetic field induced by the SOC in the reference frame, which is exactly following the classical trajectory of the electron and obtained by applying a quantum linear coordinate transformation. With this observation for one-dimensional (1D) case, we find a upper limit for the spin-flipping speed in the EDSR-based control of spin, which is given by the accessible data from the current experiment. For two-dimensional case, the azimuthal dependence of the effective magnetic field can be used to measure the ratio of the Rashba and Dresselhause SOC strengths.
Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
218 - D. M. Zajac , T. M. Hazard , X. Mi 2016
We demonstrate a 12 quantum dot device fabricated on an undoped Si/SiGe heterostructure as a proof-of-concept for a scalable, linear gate architecture for semiconductor quantum dots. The device consists of 9 quantum dots in a linear array and 3 single quantum dot charge sensors. We show reproducible single quantum dot charging and orbital energies, with standard deviations less than 20% relative to the mean across the 9 dot array. The single quantum dot charge sensors have a charge sensitivity of 8.2 x 10^{-4} e/root(Hz) and allow the investigation of real-time charge dynamics. As a demonstration of the versatility of this device, we use single-shot readout to measure a spin relaxation time T1 = 170 ms at a magnetic field B = 1 T. By reconfiguring the device, we form two capacitively coupled double quantum dots and extract a mutual charging energy of 200 microeV, which indicates that 50 GHz two-qubit gate operation speeds are feasible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا