Do you want to publish a course? Click here

Discovery of mesoscopic nematicity wave in iron-based superconductors

166   0   0.0 ( 0 )
 Added by Takahiro Shimojima
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nematicity is ubiquitous in electronic phases of high transition temperature superconductors, particularly in iron-based superconductors (IBSCs). Order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unclear. We use linear dichroism (LD) in low-temperature laser-photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to the structural domains that have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with mesoscopic wavelength. The analysis reveals that the nematic order has an extremely long coherence length, more than 1000 times longer than the unit cell. Our direct visualization of electronic spatial variation uncovers a new fundamental aspect of quantum liquid crystalline states of correlated electrons in IBSCs.



rate research

Read More

Nowadays superconductors serve in numerous applications, from high-field magnets to ultra-sensitive detectors of radiation. Mesoscopic superconducting devices, i.e. those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, e.g., leakage currents or decreased coherence times in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics which is in quantitative agreement with the experimental data.
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of a hole-doped BaFe2As2. This observation was interpreted as indirect evidence of a new double-Q magnetic structure, but alternative models of orbital order could not be ruled out. Here, we present Mossbauer data that show unambiguously that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. We show that this state is naturally explained as the interference between two spin-density waves, demonstrating the itinerant character of the magnetism of these materials and the primary role played by magnetic over orbital degrees of freedom.
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperature even in the low-temperature regime. This dependence is attributed to high sensitivity of perfectly conducting channels to dephasing and the SNS fluctuations thus provide a sensitive probe of dephasing in a regime where normal transport fails to detect it. Further, the conductance fluctuations are strongly non-linear in bias voltage and reveal sub-gap structure. The experimental findings are qualitatively explained in terms of multiple Andreev reflections in chaotic quantum dots with imperfect contacts.
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while others are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
Magnetic impurities inserted in a $s$-wave superconductor give rise to spin-polarized in-gap states called Shiba states. We study the back-action of these induced states on the dynamics of the classical moments. We show that the Shiba state pertains to both reactive and dissipative torques acting on the precessing classical spin that can be detected through ferromagnetic resonance measurements. Moreover, we highlight the influence of the bulk states as well as the effect of the finite linewidth of the Shiba state on the magnetization dynamics. Finally, we demonstrate that the torques are a direct measure of the even and odd frequency triplet pairings generated by the dynamics of the magnetic impurity. Our approach offers non-invasive alternative to the STM techniques used to probe the Shiba states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا