No Arabic abstract
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of a hole-doped BaFe2As2. This observation was interpreted as indirect evidence of a new double-Q magnetic structure, but alternative models of orbital order could not be ruled out. Here, we present Mossbauer data that show unambiguously that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. We show that this state is naturally explained as the interference between two spin-density waves, demonstrating the itinerant character of the magnetism of these materials and the primary role played by magnetic over orbital degrees of freedom.
When passing through a phase transition, electronic system saves energy by opening energy gaps at the Fermi level. Delineating the energy gap anisotropy provides insights into the origin of the interactions that drive the phase transition. Here, we report the angle-resolved photoemission spectroscopy (ARPES) study on the detailed gap anisotropies in both the tetragonal magnetic and superconducting phases in Sr$_{1-x}$Na$_x$Fe$_2$As$_2$. First, we found that the spin-density-wave (SDW) gap is strongly anisotropic in the tetragonal magnetic phase. The gap magnitude correlates with the orbital character of Fermi surface closely. Second, we found that the SDW gap anisotropy is isostructural to the superconducting gap anisotropy regarding to the angular dependence, gap minima locations, and relative gap magnitudes. Our results indicate that the superconducting pairing interaction and magnetic interaction share the same origin. The intra-orbital scattering plays an important role in constructing these interactions resulting in the orbital-selective magnetism and superconductivity in iron-based superconductors.
We introduce a first principles approach to determine the strength of the electronic correlations based on the fully self consistent GW approximation. The approach provides a seamless interface with dynamical mean field theory, and gives good results for well studied correlated materials such as NiO. Applied to the recently discovered iron arsenide materials, it accounts for the noticeable correlation features observed in optics and photoemission while explaining the absence of visible satellites in X-ray absorption experiments and other high energy spectroscopies.
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-dependence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
A novel feature of the iron arsenides is the magnetoelastic coupling between the long wavelength in-plane strains of the lattice and the collective spin fluctuations of the electrons near the magnetic ordering wavevectors. Here, we study its microscopic origin from an electronic model with nested Fermi pockets and a nominal interaction. We find the couplings diverge with a power-law as the system is tuned to perfect nesting. Furthermore, the theory reveals how nematicity is boosted by nesting. These results are relevant for other systems with nesting driven density wave transitions.
We use the renormalization group method to study the normal state of quasi-one-dimensional superconductors nearby a spin-density-wave instability. On the basis of one-loop scattering amplitudes for the quasi-one-dimensional electron gas, the integration of the renormalization group equations for the two-loop single particle Matsubara self-energy leads to a nonFermi-liquid temperature downturn of the momentum-resolved quasi-particle weight over most part of the Fermi surface. The amplitude of the downturn correlates with the entire instability line for superconductivity, defining an extended quantum critical region of the phase diagram as a function of nesting deviations of the Fermi surface. One also extracts the downward renormalization of interchain hopping amplitudes at arbitrary low temperature in the normal phase. By means of analytical continuation of the Matsubara self-energy, one-particle spectral functions are obtained with respect to both energy and temperature and their anomalous features analyzed in connection with the sequence of instability lines of the phase diagram. The quasi-particle scattering rate is found to develop an unusual temperature dependence, which is best described by the superimposition of a linear and quadratic $T$ dependences. The nonFermi-liquid linear-$T$ component correlates with the temperature scale $T_c$ of the superconducting instability over an extended range of nesting deviations, whereas its anisotropy along the Fermi surface is predicted to parallel the momentum profile of a d-wave pairing gap on the Fermi surface. We examine the implications of our results for low dimensional unconventional superconductors, in particular the Bechgaard salts series of quasi-1D organic conductors, but also the pnictide and cuprate superconductors where several common features are observed.