No Arabic abstract
Monopole operators are studied at certain quantum critical points between a Dirac spin liquid and topological quantum spin liquids (QSLs): chiral and Z$_{2}$ QSLs. These quantum phase transitions are described by conformal field theories (CFTs): quantum electrodynamics in 2+1 dimensions with 2N flavors of two-component massless Dirac fermions and a four-fermion interaction term. For the transition to a chiral spin liquid, it is the Gross-Neveu interaction (QED$_{3}$-GN), while for the transition to the Z$_{2}$ QSL it is a superconducting pairing term (QED$_{3}$-Z$_{2}$GN). Using the state-operator correspondence, we obtain monopole scaling dimensions to sub-leading order in 1/N. For monopoles with a minimal topological charge q = 1/2, the scaling dimension is 2N*0.26510 at leading-order, with the quantum correction being 0.118911(7) for the chiral spin liquid, and 0.102846(9) for the Z$_{2}$ case. Although these two anomalous dimensions are nearly equal, the underlying quantum fluctuations possess distinct origins. The analogous result in QED$_{3}$ is also obtained and we find a sub-leading contribution of $-$0.038138(5), which is slightly different from the value $-$0.0383 first obtained in the literature. The scaling dimension of a QED$_{3}$-GN monopole with minimal charge is very close to the scaling dimensions of other operators predicted to be equal by a conjectured duality between QED$_{3}$-GN with 2N = 2 flavors and the CP$^{1}$ model. Additionally, non-minimally charged monopoles with equal charges on both sides of the duality have similar scaling dimensions. By studying the large-q asymptotics of the scaling dimensions in QED$_{3}$, QED$_{3}$-GN, and QED$_{3}$-Z$_{2}$GN we verify that the constant O(q$^{0}$) coefficient precisely matches the universal prediction for CFTs with a global U(1) symmetry.
Quantum spin liquids host novel emergent excitations, such as monopoles of an emergent gauge field. Here, we study the hierarchy of monopole operators that emerges at quantum critical points (QCPs) between a two-dimensional Dirac spin liquid and various ordered phases. This is described by a confinement transition of quantum electrodynamics in two spatial dimensions (QED3 Gross-Neveu theories). Focusing on a spin ordering transition, we get the scaling dimension of monopoles at leading order in a large-N expansion, where 2N is the number of Dirac fermions, as a function of the monopoles total magnetic spin. Monopoles with a maximal spin have the smallest scaling dimension while monopoles with a vanishing magnetic spin have the largest one, the same as in pure QED3. The organization of monopoles in multiplets of the QCPs symmetry group SU(2) x SU(N) is shown for general N.
We use determinant quantum Monte Carlo (DQMC) simulations to study the role of electron-electron interactions on three-dimensional (3D) Dirac fermions based on the $pi$-flux model on a cubic lattice. We show that the Hubbard interaction drives the 3D Dirac semimetal to an antiferromagnetic (AF) insulator only above a finite critical interaction strength and the long-ranged AF order persists up to a finite temperature. We evaluate the critical interaction strength and temperatures using finite-size scaling of the spin structure factor. The critical behaviors are consistent with the (3+1)d Gross-Neveu universality class for the quantum critical point and 3D Heisenberg universality class for the thermal phase transitions. We further investigate correlation effects in birefringent Dirac fermion system. It is found that the critical interaction strength $U_c$ is decreased by reducing the velocity of the Dirac cone, quantifying the effect of velocity on the critical interaction strength in 3D Dirac fermion systems. Our findings unambiguously uncover correlation effects in 3D Dirac fermions, and may be observed using ultracold atoms in an optical lattice.
We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. The realisation of an engineered quantum system, where the predicted phase transition shall occur, is also presented. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization group flow equation of its couplings, showing that the critical value of the frequency is the square of the corresponding value in $2D$. The value of the anomalous dimension at the critical point is determined ($eta=1/32$) and a conjecture for the universal jump of the superfluid stiffness ($4/pi^2$) presented.
We study the robustness of the paradigmatic kagome Resonating Valence Bond (RVB) spin liquid and its orthogonal version, the quantum dimer model. The non-orthogonality of singlets in the RVB model and the induced finite length scale not only makes it difficult to analyze, but can also significantly affect its physics, such as how much noise resilience it exhibits. Surprisingly, we find that this is not the case: The amount of perturbations which the RVB spin liquid can tolerate is not affected by the finite correlation length, making the dimer model a viable model for studying RVB physics under perturbations. Remarkably, we find that this is a universal phenomenon protected by symmetries: First, the dominant correlations in the RVB are spinon correlations, making the state robust against doping with visons. Second, reflection symmetry stabilizes the spin liquid against doping with spinons, by forbidding mixing of the initially dominant correlations with those which lead to the breakdown of topological order.
We calculate the effect of the emergent photon on threshold production of spinons in $U(1)$ Coulomb spin liquids such as quantum spin ice. The emergent Coulomb interaction modifies the threshold production cross-section dramatically, changing the weak turn-on expected from the density of states to an abrupt onset reflecting the basic coupling parameters. The slow photon typical in existing lattice models and materials suppresses the intensity at finite momentum and allows profuse Cerenkov radiation beyond a critical momentum. These features are broadly consistent with recent numerical and experimental results.