Do you want to publish a course? Click here

Universal scaling limits of the symplectic elliptic Ginibre ensemble

366   0   0.0 ( 0 )
 Added by Markus Ebke
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the eigenvalues of symplectic elliptic Ginibre matrices which are known to form a Pfaffian point process whose correlation kernel can be expressed in terms of the skew-orthogonal Hermite polynomials. We derive the scaling limits and the convergence rates of the correlation functions at the real bulk/edge of the spectrum, which in particular establishes the local universality at strong non-Hermiticity. Furthermore, we obtain the subleading corrections of the edge correlation kernels, which depend on the non-Hermiticity parameter contrary to the universal leading term. Our proofs are based on the asymptotic behaviour of the complex elliptic Ginibre ensemble due to Lee and Riser as well as on a version of the Christoffel-Darboux identity, a differential equation satisfied by the skew-orthogonal polynomial kernel.



rate research

Read More

We consider various asymptotic scaling limits $Ntoinfty$ for the $2N$ complex eigenvalues of non-Hermitian random matrices in the symmetry class of the symplectic Ginibre ensemble. These are known to be integrable, forming Pfaffian point processes, and we obtain limiting expressions for the corresponding kernel for different potentials. The first part is devoted to the symplectic Ginibre ensemble with a Gaussian potential. We obtain the asymptotic at the edge of the spectrum in the vicinity of the real line. The unifying form of the kernel allows us to make contact with the bulk scaling along the real line and with the edge scaling away from the real line, where we recover the known determinantal process of the complex Ginibre ensemble. Part two covers ensembles of Mittag-Leffler type with a singularity at the origin. For potentials $Q(zeta)=|zeta|^{2lambda}-(2c/N)log|zeta|$, with $lambda>0$ and $c>-1$, the limiting kernel obeys a linear differential equation of fractional order $1/lambda$ at the origin. For integer $m=1/lambda$ it can be solved in terms of Mittag-Leffler functions. In the last part, we derive the Wards equation for a general class of potentials as a tool to investigate universality. This allows us to determine the functional form of kernels that are translation invariant up to its integration domain.
We give a method for taking microscopic limits of normal matrix ensembles. We apply this method to study the behaviour near certain types of singular points on the boundary of the droplet. Our investigation includes ensembles without restrictions near the boundary, as well as hard edge ensembles, where the eigenvalues are confined to the droplet. We establish in both cases existence of new types of determinantal point fields, which differ from those which can appear at a regular boundary point, or in the bulk.
Let $sqrt{N}+lambda_{max}$ be the largest real eigenvalue of a random $Ntimes N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix). We study the large deviations behaviour of the limiting $Nrightarrow infty$ distribution $P[lambda_{max}<t]$ of the shifted maximal real eigenvalue $lambda_{max}$. In particular, we prove that the right tail of this distribution is Gaussian: for $t>0$, [ P[lambda_{max}<t]=1-frac{1}{4}mbox{erfc}(t)+Oleft(e^{-2t^2}right). ] This is a rigorous confirmation of the corresponding result of Forrester and Nagao. We also prove that the left tail is exponential: for $t<0$, [ P[lambda_{max}<t]= e^{frac{1}{2sqrt{2pi}}zetaleft(frac{3}{2}right)t+O(1)}, ] where $zeta$ is the Riemann zeta-function. Our results have implications for interacting particle systems. The edge scaling limit of the law of real eigenvalues for the real Ginibre ensemble is a rescaling of a fixed time distribution of annihilating Brownian motions (ABMs) with the step initial condition. Therefore, the tail behaviour of the distribution of $X_s^{(max)}$ - the position of the rightmost annihilating particle at fixed time $s>0$ - can be read off from the corresponding answers for $lambda_{max}$ using $X_s^{(max)}stackrel{D}{=} sqrt{4s}lambda_{max}$.
We prove rates of convergence for the circular law for the complex Ginibre ensemble. Specifically, we bound the expected $L_p$-Wasserstein distance between the empirical spectral measure of the normalized complex Ginibre ensemble and the uniform measure on the unit disc, both in expectation and almost surely. For $1 le p le 2$, the bounds are of the order $n^{-1/4}$, up to logarithmic factors.
68 - Julian Grote 2018
Fix a space dimension $dge 2$, parameters $alpha > -1$ and $beta ge 1$, and let $gamma_{d,alpha, beta}$ be the probability measure of an isotropic random vector in $mathbb{R}^d$ with density proportional to begin{align*} ||x||^alpha, expleft(-frac{|x|^beta}{beta}right), qquad xin mathbb{R}^d. end{align*} By $K_lambda$, we denote the Generalized Gamma Polytope arising as the random convex hull of a Poisson point process in $mathbb{R}^d$ with intensity measure $lambdagamma_{d,alpha,beta}$, $lambda>0$. We establish that the scaling limit of the boundary of $K_lambda$, as $lambda rightarrow infty$, is given by a universal `festoon of piecewise parabolic surfaces, independent of $alpha$ and $beta$. Moreover, we state a list of other large scale asymptotic results, including expectation and variance asymptotics, central limit theorems, concentration inequalities, Marcinkiewicz-Zygmund-type strong laws of large numbers, as well as moderate deviation principles for the intrinsic volumes and face numbers of $K_lambda$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا