Do you want to publish a course? Click here

Moments of the ruin time in a perturbed Cramer-Lundberg model

69   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present formulae for the moments of the ruin time in a Levy risk model. From these we derive the asymptotic behaviour of the moments of the ruin time, as the initial capital tends to infinity. In the perturbed Cramer-Lundberg model with phase-type distributed claims, we explicitely compute the first two moments of the ruin time in terms of roots and derivatives of the corresponding Laplace exponent. In the special case of exponential claims we provide explicit formulae for the first two moments of the ruin time in terms of the model parameters. All our considerations distinguish between the profitable and the unprofitable setting.



rate research

Read More

Based on a discrete version of the Pollaczeck-Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber-Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
56 - F. Klebaner , R. Liptser 2005
We give asymptotic analysis for probability of absorbtion $mathsf{P}(tau_0le T)$ on the interval $[0,T]$, where $ tau_0=inf{t:X_t=0}$ and $X_t$ is a nonnegative diffusion process relative to Brownian motion $B_t$, dX_t&=mu X_tdt+sigma X^gamma_tdB_t. X_0&=K>0 Diffusion parameter $sigma x^gamma$, $gammain [{1/2},1)$ is not Lipschitz continuous and assures $mathsf{P}(tau_0>T)>0$. Our main result: $$ limlimits_{Ktoinfty} frac{1}{K^{2(1-gamma)}}logmathsf{P}(tau_{0}le T) =-frac{1}{2E M^2_T}, $$ where $ M_T=int_0^Tsigma(1-gamma)e^{-(1-gamma)mu s}dB_s $. Moreover we describe the most likely path to absorbtion of the normed process $frac{X_t}{K}$ for $Ktoinfty$.
134 - Van Hao Can 2017
In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method, we provide an explicit formula of the error and deduce a Cramer-type result.
80 - Onno Boxma , Esther Frostig , 2020
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proportional gain feature, that is, if the surplus process just before the $i$th arrival is at level $u$, then for $a>0$ the capital jumps up to the level $(1+a)u+C_i$. The ruin probability and the distribution of the time to ruin are determined. We furthermore identify the value of discounted cumulative dividend payments, for the case of a Poisson arrival process of proportional gains. In the dividend calculations, we also consider a random perturbation of our basic risk process modeled by an independent Brownian motion with drift.
241 - Zbigniew Palmowski 2021
In this paper we give few expressions and asymptotics of ruin probabilities for a Markov modulated risk process for various regimes of a time horizon, initial reserves and a claim size distribution. We also consider f
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا