No Arabic abstract
The Nielsen-Ninomiya Theorem has set up a ground rule for the minimal number of the topological points in a Brillouin zone. Notably, in the 2D Brillouin zone, chiral symmetry and space-time inversion symmetry can properly define topological invariants as charges characterizing the stability of the nodal points so that the non-zero charges protect these points. Due to the charge neutralization, the Nielsen-Ninomiya Theorem requires at least two stable topological points in the entire Brillouin zone. However, additional crystalline symmetries might duplicate the points. In this regard, for the wallpaper groups with crystalline symmetries, the minimal number of the nodal points in the Brillouin zone might be more than two. In this work, we determine the minimal numbers of the nodal points for the wallpaper groups in chiral-symmetric and space-time-inversion-symmetric systems separately and provide examples for new topological materials, such as topological nodal time-reversal-symmetric superconductors and Dirac semimetals. This generalized Nielsen-Ninomiya Theorem serves as a guide to search for 2D topological nodal materials. Furthermore, we show the Nielsen-Ninomiya Theorem can be extended to 2D non-Hermitian systems hosting topologically protected exceptional points and Fermi points for the 17 wallpaper groups.
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hinge modes, or (iv) flat zero-energy hinge arcs connecting nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline (anti-)symmetry, such as mirror, twofold rotation, or inversion.
We propose a platform to realize nodal topological superconductors in a superconducting monolayer of MoX$_2$ (X$=$S, Se, Te) using an in-plane magnetic field. The bulk nodal points appear where the spin splitting due to spin-orbit coupling vanishes near the $pm boldsymbol{K}$ valleys of the Brillouin zone, and are six or twelve per valley in total. In the nodal topological superconducting phase, the nodal points are connected by flat bands of zero-energy Andreev edge states. These flat bands, which are protected by chiral symmetry, are present for all lattice-termination boundaries except zigzag.
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs having real bulk spectra. We show that they exhibit the striking property that the bulk and surfaces are anti-PT and PT symmetric, respectively, and so belong to two different topological classes realizing a novel non-Hermitian topological phase which we call a emph{hybrid-PT topological phases}. Interestingly, while the bulk spectrum is still fully real, we find that exceptional Fermi-rings (EFRs) appear connecting the two Dirac nodes on the surface. This provides a route to probe and utilize both the bulk Dirac physics and exceptional rings/points on equal footing. Moreover, particularly for $mathcal{T}$-NHHODSMs, we also find real hinge-arcs connecting the surface EFRs. We show that this higher-order topology can be characterized using a biorthogonal real-space formula of the quadrupole moment. Furthermore, by applying Hermitian $C_4$-symmetric perturbations, we discover various novel phases, particularly: (i) an intrinsic $mathcal{I}$-NHHODSM having hinge arcs and gapped surfaces, and (ii) a novel $mathcal{T}$-symmetric skin-topological HODSM which possesses both topological and skin hinge modes. The interplay between non-Hermition and higher-order topology in this work paves the way toward uncovering rich phenomena and hybrid functionality that can be readily realized in experiment.
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate that the number of Majorana cones equates to the number of intersections between the $d$-wave nodal lines and the Fermi arcs. We illustrate the importance of nodal line-arc intersections by demonstrating the existence of locally stable surface Majorana cones that the winding number does not predict. The discrepancy between Majorana cones and the winding number necessitates an augmentation of the winding number formulation to account for each intersection. In addition, we show that imposing additional mirror symmetries globally protect the nodal line-arc intersections and the corresponding Majorana cones.
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this Review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials and (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals and other topological phases and (v) we discuss the possible physical effects accessible to experimental probes in these materials.