No Arabic abstract
The currently released datasets of the observational surveys reveal the redshift dependence of the physical features of cosmic voids. We study the void induced hyperbolicity, that is the deviation of the photon beams propagating the voids, taking into account the redshift dependence of the void size indicated by the observational surveys. The cumulative image distortion parameter is obtained for the case of a sequence of variable size voids and given underdensity parameters. The derived formulae applied along with those of redshift distortion ones, enable one to trace the number and the physical parameters of the line-of-sight voids from the analysis of the distortion in the galactic surveys.}
Cosmic voids - the low density regions in the Universe - as characteristic features of the large scale matter distribution, are known for their hyperbolic properties. The latter implies the deviation of photon beams due to their underdensity, thus mimicing the negative curvature. We now show that the hyperbolicity can be induced not only by negative curvature or underdensity but also depends on the anisotropy of the photon beams.
Cosmic voids as typical under-density regions in the large scale Universe are known for their hyperbolic properties as an ability to deviate the photon beams. The under-density then is acting as the negative curvature in the hyperbolic spaces. The hyperbolicity of voids has to lead to distortion in the statistical analysis at galactic surveys. We reveal the sensitivity of the hyperbolicity and hence of the distortion with respect to the ratio of void/wall scales which are observable parameters. This provides a principal possibility to use the distortion in the galactic surveys in revealing the line-of sight number of cosmic voids and their characteristic scales.
The properties of large underdensities in the distribution of galaxies in the Universe, known as cosmic voids, are potentially sensitive probes of fundamental physics. We use data from the MultiDark suite of N-body simulations and multiple halo occupation distribution mocks to study the relationship between galaxy voids, identified using a watershed void-finding algorithm, and the gravitational potential $Phi$. We find that the majority of galaxy voids correspond to local density minima in larger-scale overdensities, and thus lie in potential wells. However, a subset of voids can be identified that closely trace maxima of the gravitational potential and thus stationary points of the velocity field. We identify a new void observable, $lambda_v$, which depends on a combination of the void size and the average galaxy density contrast within the void, and show that it provides a good proxy indicator of the potential at the void location. A simple linear scaling of $Phi$ as a function of $lambda_v$ is found to hold, independent of the redshift and properties of the galaxies used as tracers of voids. We provide an accurate fitting formula to describe the spherically averaged potential profile $Phi(r)$ about void centre locations. We discuss the importance of these results for the understanding of the evolution history of voids, and for their use in precision measurements of the integrated Sachs-Wolfe effect, gravitational lensing and peculiar velocity distortions in redshift space.
We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement explains the anomalous large signals due to cosmic rays previously detected in the NAUTILUS gravitational wave detector.
We trace the cosmic web at redshifts 1.0 <= z <= 1.8 using the quasar data from the SDSS DR7 QSO catalogue (Schneider et al. 2010). We apply a friend-of-friend (FoF) algorithm to the quasar and random catalogues to determine systems at a series of linking lengths, and analyse richness and sizes of these systems. At the linking lengths l <= 30 Mpc/h the number of quasar systems is larger than the number of systems detected in random catalogues, and systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe, the richest quasar systems have four members. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 <= l <= 70 Mpc/h) the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. At the linking length 70 Mpc/h the richest systems of quasars have diameters exceeding 500 Mpc/h. The percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples (85 Mpc/h). Quasar luminosities in systems are not correlated with the system richness. Quasar system catalogues at our web pages http://www.aai.ee/~maret/QSOsystems.html serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.