No Arabic abstract
We trace the cosmic web at redshifts 1.0 <= z <= 1.8 using the quasar data from the SDSS DR7 QSO catalogue (Schneider et al. 2010). We apply a friend-of-friend (FoF) algorithm to the quasar and random catalogues to determine systems at a series of linking lengths, and analyse richness and sizes of these systems. At the linking lengths l <= 30 Mpc/h the number of quasar systems is larger than the number of systems detected in random catalogues, and systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe, the richest quasar systems have four members. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 <= l <= 70 Mpc/h) the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. At the linking length 70 Mpc/h the richest systems of quasars have diameters exceeding 500 Mpc/h. The percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples (85 Mpc/h). Quasar luminosities in systems are not correlated with the system richness. Quasar system catalogues at our web pages http://www.aai.ee/~maret/QSOsystems.html serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.
Simulations of structure formation in the Universe predict that galaxies are embedded in a cosmic web, where the majority of baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-alpha emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at z=2.3. With a projected size of approximately 460 physical kpc, the Lyman-alpha emission surrounding the radio-quiet quasar UM287 extends well beyond the virial radius of any plausible associated dark matter halo. The estimated cold gas mass of the nebula from the observed emission is at least ten times larger than what is typically found by cosmological simulations, suggesting that a population of intergalactic gas clumps with sub-kpc sizes may be missing within current numerical models.
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web -- depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper we bring twelve of these methods together and apply them to the same data set in order to understand how they compare. In general these cosmic web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore one would not {it a priori} expect agreement between different techniques however, many of these methods do converge on the identification of specific features. In this paper we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. $M_{rm halo}sim10^{13.5}h^{-1}M_{odot}$) as being in filaments. Lastly, so that any future cosmic web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
We introduce the NEXUS algorithm for the identification of Cosmic Web environments: clusters, filaments, walls and voids. This is a multiscale and automatic morphological analysis tool that identifies all the cosmic structures in a scale free way, without preference for a certain size or shape. We develop the NEXUS method to incorporate the density, tidal field, velocity divergence and velocity shear as tracers of the Cosmic Web. We also present the NEXUS+ procedure which, taking advantage of a novel filtering of the density in logarithmic space, is very successful at identifying the filament and wall environments in a robust and natural way. To asses the algorithms we apply them to an N-body simulation. We find that all methods correctly identify the most prominent filaments and walls, while there are differences in the detection of the more tenuous structures. In general, the structures traced by the density and tidal fields are clumpier and more rugged than those present in the velocity divergence and velocity shear fields. We find that the NEXUS+ method captures much better the filamentary and wall networks and is successful in detecting even the fainter structures. We also confirm the efficiency of our methods by examining the dark matter particle and halo distributions.
The intra-cluster and inter-galactic media (ICM, IGM) that pervade the large scale structure of the Universe are known to be magnetised at sub-micro Gauss to micro Gauss levels and to contain cosmic rays (CRs). The acceleration of CRs and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the ICM such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of CR acceleration. Observations with radiotelescopes such as the GMRT, the VLA and the WSRT (0.15 - 2 GHz) have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. Due to the limitations of current radio telescopes, wide-band studies and exploration of low mass and supercluster-scale systems is difficult. The Square Kilometer Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05 - 20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the CR acceleration mechanisms. The higher frequency (> 5 GHz) observations will be able to use the Sunyaev-Zeldovich effect to probe the ICM pressure in addition to the tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the off-state radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models. [abridged]
Most galaxy evolutionary models require quasar feedback to regulate star formation in their host galaxies. In particular, at high redshift, models expect that feedback associated with quasar-driven outflows is so efficient that the gas in the host galaxy is largely swept away or heated up, hence suppressing star formation in massive galaxies. We observationally investigate this phenomenon by using VLT-SINFONI integral field spectroscopy of the luminous quasar 2QZJ002830.4-281706 at z=2.4. The spectra sample the optical emission lines redshifted into the near-IR. The [OIII]5007 emission-line kinematics map reveals a massive outflow on scales of several kpc. The detection of narrow Halpha emission reveals star formation in the quasar host galaxy, with SFR=100 Msun/yr. However, the star formation is not distributed uniformly, but is strongly suppressed in the region with the highest outflow velocity and highest velocity dispersion. This result indicates that star formation in this region is strongly quenched by the quasar outflow, which is cleaning the galaxy disk of its molecular gas. This is one of the first direct observational proofs of quasar feedback quenching the star formation at high redshift.