Do you want to publish a course? Click here

Generalized proof of the linearized second law in general quadric corrected Einstein-Maxwell gravity

80   0   0.0 ( 0 )
 Added by Jie Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the entropy of black holes in any diffeomorphism invariant theory of gravity can be expressed as the Wald entropy, the issue of whether the entropy always obeys the second law of black hole thermodynamics remains open. Since the nonminimal coupling interaction between gravity and the electromagnetic field in the general quadric corrected Einstein-Maxwell gravity can sufficiently influence the expression of the Wald entropy, we check whether the Wald entropy of black holes in the quadric corrected gravity still satisfies the second law. A quasistationary accreting process of black holes is first considered, which describes that black holes are perturbed by matter fields and eventually settle down to a stationary state. Two assumptions that the matter fields should obey the null energy condition and that a regular bifurcation surface exists on the background spacetime are further proposed. According to the two assumptions and the Raychaudhuri equation, we demonstrate that the Wald entropy monotonically increases along the future event horizon under the linear order approximation of the perturbation. This result indicates that the Wald entropy of black holes in the quadric corrected gravity strictly obeys the linearized second law of thermodynamics.

rate research

Read More

94 - Xin-Yang Wang , Jie Jiang 2020
Since the entropy of stationary black holes in Horndeski gravity will be modified by the non-minimally coupling scalar field, a significant issue of whether the Wald entropy still obeys the linearized second law of black hole thermodynamics can be proposed. To investigate this issue, a physical process that the black hole in Horndeski gravity is perturbed by the accreting matter fields and finally settles down to a stationary state is considered. According to the two assumptions that there is a regular bifurcation surface in the background spacetime and that the matter fields always satisfy the null energy condition, one can show that the Wald entropy monotonically increases along the future event horizon under the linear order approximation without any specific expression of the metric. It illustrates that the Wald entropy of black holes in Horndeski gravitational theory still obeys the requirement of the linearized second law. Our work strengthens the physical explanation of Wald entropy in Horndeski gravity and takes a step towards studying the area increase theorem in the gravitational theories with non-minimal coupled matter fields.
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the scalar field and the matter field (as chameleon field). Then, we derive the field equations governing the gravity and the scalar field. For a FRW universe filled only with ordinary matter, we obtain the modified Friedmann equations as well as the evolution equation of the scalar field. Furthermore, we assume the boundary of the universe to be enclosed by the dynamical apparent horizon which is in thermal equilibrium with the Hawking temperature. We obtain a general expression for the GSL of thermodynamics in the scalar-tensor gravity model. For some viable scalar-tensor models, we first obtain the evolutionary behaviors of the matter density, the scale factor, the Hubble parameter, the scalar field, the deceleration parameter as well as the effective equation of state (EoS) parameter. We conclude that in most of the models, the deceleration parameter approaches a de Sitter regime at late times, as expected. Also the effective EoS parameter acts like the LCDM model at late times. Finally, we examine the validity of the GSL for the selected models.
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T) = R + f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and on the form of f(T).
254 - Li-Ming Cao , Jianfei Xu 2014
We consider a static self-gravitating perfect fluid system in Lovelock gravity theory. For a spacial region on the hypersurface orthogonal to static Killing vector, by the Tolmans law of temperature, the assumption of a fixed total particle number inside the spacial region, and all of the variations (of relevant fields) in which the induced metric and its first derivatives are fixed on the boundary of the spacial region, then with the help of the gravitational equations of the theory, we can prove a theorem says that the total entropy of the fluid in this region takes an extremum value. A converse theorem can also be obtained following the reverse process of our proof. We also propose the definition of isolation quasi-locally for the system and explain the physical meaning of the boundary conditions in the proof of the theorems.
91 - G.G.L. Nashed , K. Bamba 2021
We investigate the solutions of black holes in $f(T)$ gravity with nonlinear power-law Maxwell field, where $T$ is the torsion scalar in teleparalelism. In particular, we introduce the Langranian with diverse dimensions in which the quadratic polynomial form of $f(T)$ couples with the nonlinear power-law Maxwell field. We explore the leverage of the nonlinear electrodynamics on the space-time behavior. It is found that these new black hole solutions tend towards those in general relativity without any limit. Furthermore, it is demonstrated that the singularity of the curvature invariant and the torsion scalar is softer than the quadratic form of the charged field equations in $f(T)$ gravity and much milder than that in the classical general relativity because of the nonlinearity of the Maxwell field. In addition, from the analyses of physical and thermodynamic quantities of the mass, charge and the Hawking temperature of black holes, it is shown that the power-law parameter affects the asymptotic behavior of the radial coordinate of the charged terms, and that a higher-order nonlinear power-law Maxwell field imparts the black holes with the local stability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا