Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A multi-step approach is developed that simultaneously estimates the parametric components and the nonparametric function. Under certain regularity conditions, it is shown that the resulting estimators is consistent and asymptotic normal for the parametric part and achieve the optimal rate of convergence for the nonparametric part when the bandwidth is suitably chosen. Simulation results are presented to demonstrate the effectiveness and finite-sample performance of the method. The method is also applied to a SELDI-TOF mass spectrometry data set from a study of liver cancer patients.
The purpose of this paper is to construct confidence intervals for the regression coefficients in the Fine-Gray model for competing risks data with random censoring, where the number of covariates can be larger than the sample size. Despite strong motivation from biomedical applications, a high-dimensional Fine-Gray model has attracted relatively little attention among the methodological or theoretical literature. We fill in this gap by developing confidence intervals based on a one-step bias-correction for a regularized estimation. We develop a theoretical framework for the partial likelihood, which does not have independent and identically distributed entries and therefore presents many technical challenges. We also study the approximation error from the weighting scheme under random censoring for competing risks and establish new concentration results for time-dependent processes. In addition to the theoretical results and algorithms, we present extensive numerical experiments and an application to a study of non-cancer mortality among prostate cancer patients using the linked Medicare-SEER data.
We propose a latent topic model with a Markovian transition for process data, which consist of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinees latent state. Using topic transition probabilities along with response times enables us to capture examinees learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem solving item in 2012 Programme for International Student Assessment (PISA 2012).
Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.
Functional data, with basic observational units being functions (e.g., curves, surfaces) varying over a continuum, are frequently encountered in various applications. While many statistical tools have been developed for functional data analysis, the issue of smoothing all functional observations simultaneously is less studied. Existing methods often focus on smoothing each individual function separately, at the risk of removing important systematic patterns common across functions. We propose a nonparametric Bayesian approach to smooth all functional observations simultaneously and nonparametrically. In the proposed approach, we assume that the functional observations are independent Gaussian processes subject to a common level of measurement errors, enabling the borrowing of strength across all observations. Unlike most Gaussian process regression models that rely on pre-specified structures for the covariance kernel, we adopt a hierarchical framework by assuming a Gaussian process prior for the mean function and an Inverse-Wishart process prior for the covariance function. These prior assumptions induce an automatic mean-covariance estimation in the posterior inference in addition to the simultaneous smoothing of all observations. Such a hierarchical framework is flexible enough to incorporate functional data with different characteristics, including data measured on either common or uncommon grids, and data with either stationary or nonstationary covariance structures. Simulations and real data analysis demonstrate that, in comparison with alternative methods, the proposed Bayesian approach achieves better smoothing accuracy and comparable mean-covariance estimation results. Furthermore, it can successfully retain the systematic patterns in the functional observations that are usually neglected by the existing functional data analyses based on individual-curve smoothing.
We propose modeling raw functional data as a mixture of a smooth function and a highdimensional factor component. The conventional approach to retrieving the smooth function from the raw data is through various smoothing techniques. However, the smoothing model is not adequate to recover the smooth curve or capture the data variation in some situations. These include cases where there is a large amount of measurement error, the smoothing basis functions are incorrectly identified, or the step jumps in the functional mean levels are neglected. To address these challenges, a factor-augmented smoothing model is proposed, and an iterative numerical estimation approach is implemented in practice. Including the factor model component in the proposed method solves the aforementioned problems since a few common factors often drive the variation that cannot be captured by the smoothing model. Asymptotic theorems are also established to demonstrate the effects of including factor structures on the smoothing results. Specifically, we show that the smoothing coefficients projected on the complement space of the factor loading matrix is asymptotically normal. As a byproduct of independent interest, an estimator for the population covariance matrix of the raw data is presented based on the proposed model. Extensive simulation studies illustrate that these factor adjustments are essential in improving estimation accuracy and avoiding the curse of dimensionality. The superiority of our model is also shown in modeling Canadian weather data and Australian temperature data.
Weiping Ma
,Yang Feng
,Kani Chen
.
(2013)
.
"Functional and Parametric Estimation in a Semi- and Nonparametric Model with Application to Mass-Spectrometry Data"
.
Yang Feng
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا