No Arabic abstract
With the rapid spread of the novel coronavirus (COVID-19) across the globe and its continuous mutation, it is of pivotal importance to design a system to identify different known (and unknown) variants of SARS-CoV-2. Identifying particular variants helps to understand and model their spread patterns, design effective mitigation strategies, and prevent future outbreaks. It also plays a crucial role in studying the efficacy of known vaccines against each variant and modeling the likelihood of breakthrough infections. It is well known that the spike protein contains most of the information/variation pertaining to coronavirus variants. In this paper, we use spike sequences to classify different variants of the coronavirus in humans. We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance. We also show that we can train our model to outperform the baseline algorithms using only a small number of training samples ($1%$ of the data). Finally, we show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USAs Centers for Disease Control and Prevention (CDC).
CovID-19 genetics analysis is critical to determine virus type,virus variant and evaluate vaccines. In this paper, SARS-Cov-2 RNA sequence analysis relative to region or territory is investigated. A uniform framework of sequence SVM model with various genetics length from short to long and mixed-bases is developed by projecting SARS-Cov-2 RNA sequence to different dimensional space, then scoring it according to the output probability of pre-trained SVM models to explore the territory or origin information of SARS-Cov-2. Different sample size ratio of training set and test set is also discussed in the data analysis. Two SARS-Cov-2 RNA classification tasks are constructed based on GISAID database, one is for mainland, Hongkong and Taiwan of China, and the other is a 6-class classification task (Africa, Asia, Europe, North American, South American& Central American, Ocean) of 7 continents. For 3-class classification of China, the Top-1 accuracy rate can reach 82.45% (train 60%, test=40%); For 2-class classification of China, the Top-1 accuracy rate can reach 97.35% (train 80%, test 20%); For 6-class classification task of world, when the ratio of training set and test set is 20% : 80% , the Top-1 accuracy rate can achieve 30.30%. And, some Top-N results are also given.
As of July 2021, there is a continuing outbreak of the B.1.617.2 (Delta) variant of SARS-CoV-2 in Sydney, Australia. The outbreak is of major concern as the Delta variant is estimated to have twice the reproductive number to previous variants that circulated in Australia in 2020, which is worsened by low levels of acquired immunity in the population. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, in terms of both mitigation (case isolation, home quarantine) and suppression (school closures, social distancing). Our nowcasting modelling indicated that the level of social distancing currently attained in Sydney is inadequate for the outbreak control. A counter-factual analysis suggested that if 80% of agents comply with social distancing, then at least a month is needed for the new daily cases to reduce from their peak to below ten. A small reduction in social distancing compliance to 70% lengthens this period to 45 days.
SARS-CoV-2, like any other virus, continues to mutate as it spreads, according to an evolutionary process. Unlike any other virus, the number of currently available sequences of SARS-CoV-2 in public databases such as GISAID is already several million. This amount of data has the potential to uncover the evolutionary dynamics of a virus like never before. However, a million is already several orders of magnitude beyond what can be processed by the traditional methods designed to reconstruct a viruss evolutionary history, such as those that build a phylogenetic tree. Hence, new and scalable methods will need to be devised in order to make use of the ever increasing number of viral sequences being collected. Since identifying variants is an important part of understanding the evolution of a virus, in this paper, we propose an approach based on clustering sequences to identify the current major SARS-CoV-2 variants. Using a $k$-mer based feature vector generation and efficient feature selection methods, our approach is effective in identifying variants, as well as being efficient and scalable to millions of sequences. Such a clustering method allows us to show the relative proportion of each variant over time, giving the rate of spread of each variant in different locations -- something which is important for vaccine development and distribution. We also compute the importance of each amino acid position of the spike protein in identifying a given variant in terms of information gain. Positions of high variant-specific importance tend to agree with those reported by the USAs Centers for Disease Control and Prevention (CDC), further demonstrating our approach.
Global coronavirus disease pandemic (COVID-19) caused by newly identified SARS- CoV-2 coronavirus continues to claim the lives of thousands of people worldwide. The unavailability of specific medications to treat COVID-19 has led to drug repositioning efforts using various approaches, including computational analyses. Such analyses mostly rely on molecular docking and require the 3D structure of the target protein to be available. In this study, we utilized a set of machine learning algorithms and trained them on a dataset of RNA-dependent RNA polymerase (RdRp) inhibitors to run inference analyses on antiviral and anti-inflammatory drugs solely based on the ligand information. We also performed virtual screening analysis of the drug candidates predicted by machine learning models and docked them against the active site of SARS- CoV-2 RdRp, a key component of the virus replication machinery. Based on the ligand information of RdRp inhibitors, the machine learning models were able to identify candidates such as remdesivir and baloxavir marboxil, molecules with documented activity against RdRp of the novel coronavirus. Among the other identified drug candidates were beclabuvir, a non-nucleoside inhibitor of the hepatitis C virus (HCV) RdRp enzyme, and HCV protease inhibitors paritaprevir and faldaprevir. Further analysis of these candidates using molecular docking against the SARS-CoV-2 RdRp revealed low binding energies against the enzyme active site. Our approach also identified anti-inflammatory drugs lupeol, lifitegrast, antrafenine, betulinic acid, and ursolic acid to have potential activity against SARS-CoV-2 RdRp. We propose that the results of this study are considered for further validation as potential therapeutic options against COVID-19.
The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world infecting tens of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the viruss structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune systems protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.