Do you want to publish a course? Click here

Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through analysis of Viral Genomics and Structure

114   0   0.0 ( 0 )
 Added by Halie Rando
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world infecting tens of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the viruss structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune systems protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.



rate research

Read More

Genome-wide epistasis analysis is a powerful tool to infer gene interactions, which can guide drug and vaccine development and lead to a deeper understanding of microbial pathogenesis. We have considered all complete SARS-CoV-2 genomes deposited in the GISAID repository until textbf{four} different cut-off dates, and used Direct Coupling Analysis together with an assumption of Quasi-Linkage Equilibrium to infer epistatic contributions to fitness from polymorphic loci. We find textbf{eight} interactions, of which three between pairs where one locus lies in gene ORF3a, both loci holding non-synonymous mutations. We also find interactions between two loci in gene nsp13, both holding non-synonymous mutations, and four interactions involving one locus holding a synonymous mutation. Altogether we infer interactions between loci in viral genes ORF3a and nsp2, nsp12 and nsp6, between ORF8 and nsp4, and between loci in genes nsp2, nsp13 and nsp14. The paper opens the prospect to use prominent epistatically linked pairs as a starting point to search for combinatorial weaknesses of recombinant viral pathogens.
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hides the fact that transmission is stochastic, is dominated by a small number of individuals, and is driven by super-spreading events (SSEs). The distinct transmission features, such as high stochasticity under low prevalence, and the central role played by SSEs on transmission dynamics, should not be overlooked. Many explosive SSEs have occurred in indoor settings stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family gatherings, parties and night clubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity that outbreak can be effectively contained with targeted interventions to eliminate SSEs. Here, we describe the potential types of SSEs, how they influence transmission, and give recommendations for control of SARS-CoV-2.
As of July 2021, there is a continuing outbreak of the B.1.617.2 (Delta) variant of SARS-CoV-2 in Sydney, Australia. The outbreak is of major concern as the Delta variant is estimated to have twice the reproductive number to previous variants that circulated in Australia in 2020, which is worsened by low levels of acquired immunity in the population. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, in terms of both mitigation (case isolation, home quarantine) and suppression (school closures, social distancing). Our nowcasting modelling indicated that the level of social distancing currently attained in Sydney is inadequate for the outbreak control. A counter-factual analysis suggested that if 80% of agents comply with social distancing, then at least a month is needed for the new daily cases to reduce from their peak to below ten. A small reduction in social distancing compliance to 70% lengthens this period to 45 days.
135 - Drav{s}ko Tomic 2020
In this study, we investigated the inhibition of SARS-CoV-2 spike glycoprotein with HIV drugs and their combinations. This glycoprotein is essential for the reproduction of the SARS-COV-2 virus, so its inhibition opens new avenues for the treatment of patients with COVID-19 disease. In doing so, we used the VINI in silico model of cancer, whose high accuracy in finding effective drugs and their combinations was confirmed in vitro by comparison with existing results from NCI-60 bases, and in vivo by comparison with existing clinical trial results. In the first step, the VINI model calculated the inhibition efficiency of SARS-CoV-2 spike glycoprotein with 44 FDA-approved antiviral drugs. Of these drugs, HIV drugs have been shown to be effective, while others mainly have shown weak or no efficiency. Subsequently, the VINI model calculated the inhibition efficiency of all possible double and triple HIV drug combinations, and among them identified ten with the highest inhibition efficiency. These ten combinations were analyzed by Medscape drug-drug interaction software and LexiComp Drug Interactions. All combinations except the combination of cobicistat_abacavir_rilpivirine appear to have serious interactions (risk rating category D) when dosage adjustments/reductions are required for possible toxicity. Finally, the VINI model compared the inhibition efficiency of cobicistat_abacivir_rilpivirine combination with cocktails and individual drugs already used or planned to be tested against SARS-CoV-2. Combination cobicistat_abacivir_rilpivirine demonstrated the highest inhibition of SARS-CoV-2 spike glycoprotein over others. Thus, this combination seems to be a promising candidate for the further in vitro testing and clinical trials.
96 - Jingwei Liu 2021
CovID-19 genetics analysis is critical to determine virus type,virus variant and evaluate vaccines. In this paper, SARS-Cov-2 RNA sequence analysis relative to region or territory is investigated. A uniform framework of sequence SVM model with various genetics length from short to long and mixed-bases is developed by projecting SARS-Cov-2 RNA sequence to different dimensional space, then scoring it according to the output probability of pre-trained SVM models to explore the territory or origin information of SARS-Cov-2. Different sample size ratio of training set and test set is also discussed in the data analysis. Two SARS-Cov-2 RNA classification tasks are constructed based on GISAID database, one is for mainland, Hongkong and Taiwan of China, and the other is a 6-class classification task (Africa, Asia, Europe, North American, South American& Central American, Ocean) of 7 continents. For 3-class classification of China, the Top-1 accuracy rate can reach 82.45% (train 60%, test=40%); For 2-class classification of China, the Top-1 accuracy rate can reach 97.35% (train 80%, test 20%); For 6-class classification task of world, when the ratio of training set and test set is 20% : 80% , the Top-1 accuracy rate can achieve 30.30%. And, some Top-N results are also given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا