Do you want to publish a course? Click here

Quantum percolation and magnetic nano-dropletstates in electronically phase-separated manganite nanowires

151   0   0.0 ( 0 )
 Added by Kaixuan Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

One-dimensional (1D) confinement has been revealed to effectively tune the properties of materials in homogeneous states. The 1D physics can be further enriched by electronic inhomogeneity, which unfortunately remains largely unknown. Here we demonstrate the ultra-high sensitivity to magnetic fluctuations and the tunability of phase stability in the electronic transport properties of self-assembled electronically phase-separated manganite nanowires with extreme aspect ratio. The onset of magnetic nano-droplet state, a precursor to the ferromagnetic metallic state, is unambiguously revealed, which is attributed to the small lateral size of the nanowires that is comparable to the droplet size. Moreover, the quasi-1D anisotropy stabilizes thin insulating domains to form intrinsic tunneling junctions in the low temperature range, which is robust even under magnetic field up to 14 T, and thus essentially modifies the classic 1D percolation picture to stabilize a novel quantum percolation state. A new phase diagram is therefore established for the manganite system under quasi-1D confinement for the first time. Our findings offer new insight to understand and manipulate the colorful properties of the electronically phase-separated systems via dimensionality engineering.



rate research

Read More

151 - M. Quintero , F. Parisi , G. Leyva 2008
We present magnetic and transport measurements on La5/8-yPryCa3/8MnO3 with y = 0.3, a manganite compound exhibiting intrinsic multiphase coexistence of sub-micrometric ferromagnetic and antiferromagnetic charge ordered regions. Time relaxation effects between 60 and 120K, and the obtained magnetic and resistive viscosities, unveils the dynamic nature of the phase separated state. An experimental procedure based on the derivative of the time relaxation after the application and removal of a magnetic field enables the determination of the otherwise unreachable equilibrium state of the phase separated system. With this procedure the equilibrium phase fraction for zero field as a function of temperature is obtained. The presented results allow a correlation between the distance of the system to the equilibrium state and its relaxation behavior.
Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.
We consider phase separated states in magnetic oxides (MO) thin films. We show that these states have a non-zero electric polarization. Moreover, the polarization is intimately related to a spatial distribution of magnetization in the film. Polarized states with opposite polarization and opposite magnetic configuration are degenerate. An external electric field removes the degeneracy and allows to switch between the two states. So, one can control electric polarization and magnetic configuration of the phase separated MO thin film with the external electric field.
Thin films of strongly-correlated electron materials (SCEM) are often grown epitaxially on planar substrates and typically have anisotropic properties that are usually not captured by edge-mounted four-terminal electrical measurements, which are primarily sensitive to in-plane conduction paths. Accordingly, the correlated interactions in the out-of-plane (perpendicular) direction cannot be measured but only inferred. We address this shortcoming and show here an experimental technique in which the SCEM under study, in our case a 600 Angstrom-thick (La1-yPry)0.67Ca0.33MnO3 (LPCMO) film, serves as the base electrode in a metal-insulator-metal (MIM) trilayer capacitor structure. This unconventional arrangement allows for simultaneous determination of colossal magnetoresistance (CMR) associated with dc transport parallel to the film substrate and colossal magnetocapacitance (CMC) associated with ac transport in the perpendicular direction. We distinguish two distinct strain-related direction-dependent insulator-metal (IM) transitions and use Cole-Cole plots to establish a heretofore unobserved collapse of the dielectric response onto a universal scale-invariant power-law dependence over a large range of frequency, temperature and magnetic field.
A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا