Do you want to publish a course? Click here

Quantifying the Coherent Interaction Length of Second-Harmonic Microscopy in Lithium Niobate Confined Nanostructures

290   0   0.0 ( 0 )
 Added by Michael R\\\"using
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thin-film lithium niobate (TFLN) in the form of x- or z-cut lithium-niobate-on-insulator (LNOI) has recently popped up as a very promising and novel platform for developing integrated optoelectronic (nano)devices and exploring fundamental research. Here, we investigate the coherent interaction length $l_{c}$ of optical second-harmonic (SH) microscopy in such samples, that are purposely prepared into a wedge shape, in order to elegantly tune the geometrical confinement from bulk thicknesses down to $approx$ 50 nm. SH microscopy is a very powerful and non-invasive tool for the investigation of structural properties in the biological and solid-state sciences, especially also for visualizing and analyzing ferroelectric domains and domain walls. However, unlike bulk LN, SH microscopy in TFLN is largely affected by interfacial reflections and resonant enhancement that both rely on film thickness and substrate material. In this paper we show that the dominant SHG contribution measured in back-reflection, is the co-propagating phase-matched SH signal and textit{not} the counter-propagating SH portion as is the case for bulk LN samples. Moreover, $l_{c}$ dramatically depends also on the incident pump laser wavelength (sample dispersion) but even more on the numerical aperture of the focussing objective in use. These experimental findings on x- and z-cut TFLN are excellently backed up by our advanced numerical simulations.



rate research

Read More

Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for example used for quantum state generation and frequency conversion, their material properties at low temperatures are largely unstudied. Here, we demonstrate the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K. We observe a reproducible shift in the phase-matched pump wavelength within the telecom band, in addition to transient discontinuities while temperature cycling. Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
89 - Junjun Ma , Fei Xie , Weijin Chen 2020
Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important optical material for nonlinear frequency conversion covering a wide spectral range from ultraviolet to mid-infrared. Here we experimentally demonstrate LN metasurfaces with controllable SHG properties. Distinct enhancements for the SHG efficiency are observed at Mie-resonances. And by changing the geometric parameters thus the resonances of the metasurfaces, we manage to selectively boost the SHG efficiency at different wavelengths. Our results would pave a way for developing with high flexibility the novel compact nonlinear light sources for applications, such as biosensing and optical communications.
105 - Yang Li , Zhijin Huang , Zhan Sui 2020
Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversion efficiency in order to find practical applications in quantum light source and high resolution nonlinear microscopy, etc. Here an enhanced SHG with conversion efficiency up to the order of 0.01% at SH wavelength of 282 nm under 11 GW/cm2 pump power via the excitation of anapole in lithium niobite (LiNbO3, or LN) nanodisk through the dominating d33 nonlinear coefficient is investigated. The anapole has advantages of strongly suppressing far-field scattering and well-confined internal field which helps to boost the nonlinear conversion. Anapoles in LN nanodisk is facilitated by high index contrast between LN and substrate with properties of near-zero-index via hyperbolic metamaterial structure design. By tailoring the multi-layers structure of hyperbolic metamaterials, the anapole excitation wavelength can be tuned at different wavelengths. It indicates that an enhanced SHG can be achieved at a wide range of pump light wavelengths via different design of the epsilon-near-zero (ENZ) hyperbolic metamaterials substrates. The proposed nanostructure in this work might hold significances for the enhanced light-matter interactions at the nanoscale such as integrated optics.
We demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of $eta_0= 33000%/text{W-cm}^2$, significantly exceeding previous demonstrations.
Thin film lithium niobate is of great recent interest and an understanding of periodically poled thin-films is crucial for both fundamental physics and device developments. Second-harmonic (SH) microscopy allows for the non-invasive visualization and analysis of ferroelectric domain structures and walls. While the technique is well understood in bulk lithium niobate, SH microscopy in thin films is largely influenced by interfacial reflections and resonant enhancements, which depend on film thicknesses and the substrate materials. We present a comprehensive analysis of SH microscopy in x-cut lithium niobate thin films, based on a full three dimensional focus calculations, and accounting for interface reflections. We show that the dominant signal in back-reflection originates from a co-propagating phase-matched process observed through reflections, rather than direct detection of the counter-propagating signal as in bulk samples. We can explain the observation of domain structures in the thin film geometry, and in particular, we show that the SH signal from thin poled films allows to unambiguously distinguish areas, which are completely or only partly inverted in depth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا