Do you want to publish a course? Click here

Theory of drain noise in high electron mobility transistors based on real-space transfer

97   0   0.0 ( 0 )
 Added by Iretomiwa Esho
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High electron mobility transistors are widely used as microwave amplifiers owing to their low microwave noise figure. Electronic noise in these devices is typically modeled by noise sources at the gate and drain. While consensus exists regarding the origin of the gate noise, that of drain noise is a topic of debate. Here, we report a theory of drain noise as a type of partition noise arising from real-space transfer of hot electrons from the channel to the barrier. The theory accounts for the magnitude and dependencies of the drain temperature and suggests strategies to realize devices with lower noise figure.



rate research

Read More

We fabricated ambipolar field-effect transistors (FETs) from multi-layered triclinic ReSe2, mechanically exfoliated onto a SiO2 layer grown on p-doped Si. In contrast to previous reports on thin layers (~2 to 3 layers), we extract field-effect carrier mobilities in excess of 10^2 cm^2/Vs at room temperature in crystals with nearly ~10 atomic layers. These thicker FETs also show nearly zero threshold gate voltage for conduction and high ON to OFF current ratios when compared to the FETs built from thinner layers. We also demonstrate that it is possible to utilize this ambipolarity to fabricate logical elements or digital synthesizers. For instance, we demonstrate that one can produce simple, gate-voltage tunable phase modulators with the ability to shift the phase of the input signal by either 90^o or nearly 180^o. Given that it is possible to engineer these same elements with improved architectures, for example on h-BN in order to decrease the threshold gate voltage and increase the carrier mobilities, it is possible to improve their characteristics in order to engineer ultra-thin layered logic elements based on ReSe2.
While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential increase in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rule for the drain voltage. Above the drain voltage limit, the Off-current becomes large and has equal electron and hole contributions. This allows the recently reported light emission from appropriately biased CNFETs.
Cryogenic low noise amplifiers based on high electron mobility transistors (HEMTs) are widely used in applications such as radio astronomy, deep space communications, and quantum computing, and the physical mechanisms governing the microwave noise figure are therefore of practical interest. In particular, the contribution of thermal noise from the gate at cryogenic temperatures remains unclear owing to a lack of experimental measurements of thermal resistance under these conditions. Here, we report measurements of gate junction temperature and thermal resistance in a HEMT at cryogenic and room temperatures using a Schottky thermometry method. At temperatures $sim 20$ K, we observe a nonlinear trend of thermal resistance versus power that is consistent with heat dissipation by phonon radiation. Based on this finding, we consider heat transport by phonon radiation at the low-noise bias and liquid helium temperatures and estimate that the thermal noise from the gate is several times larger than previously assumed owing to self-heating. We conclude that without improvements in thermal management, self-heating results in a practical lower limit for microwave noise figure of HEMTs at cryogenic temperatures.
We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiations polarization state.
Flexible and transparent electronics presents a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc.Zinc oxide (ZnO) and related materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performance, together with low processing temperature and good optical transparency.In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and related materials.After a brief introduction, the main progresses on the preparation of each component (substrate, electrodes, channel and dielectrics) are summarized and discussed. Then, the effect of mechanical bending on electrical performance was highlighted. Finally, we suggest the challenges and opportunities in future investigations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا