Do you want to publish a course? Click here

Learning to Represent Human Motives for Goal-directed Web Browsing

246   0   0.0 ( 0 )
 Added by Jyun-Yu Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Motives or goals are recognized in psychology literature as the most fundamental drive that explains and predicts why people do what they do, including when they browse the web. Although providing enormous value, these higher-ordered goals are often unobserved, and little is known about how to leverage such goals to assist peoples browsing activities. This paper proposes to take a new approach to address this problem, which is fulfilled through a novel neural framework, Goal-directed Web Browsing (GoWeB). We adopt a psychologically-sound taxonomy of higher-ordered goals and learn to build their representations in a structure-preserving manner. Then we incorporate the resulting representations for enhancing the experiences of common activities people perform on the web. Experiments on large-scale data from Microsoft Edge web browser show that GoWeB significantly outperforms competitive baselines for in-session web page recommendation, re-visitation classification, and goal-based web page grouping. A follow-up analysis further characterizes how the variety of human motives can affect the difference observed in human behavioral patterns.



rate research

Read More

How can we better understand the mechanisms behind multi-turn information seeking dialogues? How can we use these insights to design a dialogue system that does not require explicit query formulation upfront as in question answering? To answer these questions, we collected observations of human participants performing a similar task to obtain inspiration for the system design. Then, we studied the structure of conversations that occurred in these settings and used the resulting insights to develop a grounded theory, design and evaluate a first system prototype. Evaluation results show that our approach is effective and can complement query-based information retrieval approaches. We contribute new insights about information-seeking behavior by analyzing and providing automated support for a type of information-seeking strategy that is effective when the clarity of the information need and familiarity with the collection content are low.
We introduce the problem of learning distributed representations of edits. By combining a neural editor with an edit encoder, our models learn to represent the salient information of an edit and can be used to apply edits to new inputs. We experiment on natural language and source code edit data. Our evaluation yields promising results that suggest that our neural network models learn to capture the structure and semantics of edits. We hope that this interesting task and data source will inspire other researchers to work further on this problem.
131 - Dongqi Han , Kenji Doya , Jun Tani 2021
What is the difference between goal-directed and habitual behavior? We propose a novel computational framework of decision making with Bayesian inference, in which everything is integrated as an entire neural network model. The model learns to predict environmental state transitions by self-exploration and generating motor actions by sampling stochastic internal states ${z}$. Habitual behavior, which is obtained from the prior distribution of ${z}$, is acquired by reinforcement learning. Goal-directed behavior is determined from the posterior distribution of ${z}$ by planning, using active inference which optimizes the past, current and future ${z}$ by minimizing the variational free energy for the desired future observation constrained by the observed sensory sequence. We demonstrate the effectiveness of the proposed framework by experiments in a sensorimotor navigation task with camera observations and continuous motor actions.
Bilingual word embeddings have been widely used to capture the similarity of lexical semantics in different human languages. However, many applications, such as cross-lingual semantic search and question answering, can be largely benefited from the cross-lingual correspondence between sentences and lexicons. To bridge this gap, we propose a neural embedding model that leverages bilingual dictionaries. The proposed model is trained to map the literal word definitions to the cross-lingual target words, for which we explore with different sentence encoding techniques. To enhance the learning process on limited resources, our model adopts several critical learning strategies, including multi-task learning on different bridges of languages, and joint learning of the dictionary model with a bilingual word embedding model. Experimental evaluation focuses on two applications. The results of the cross-lingual reverse dictionary retrieval task show our models promising ability of comprehending bilingual concepts based on descriptions, and highlight the effectiveness of proposed learning strategies in improving performance. Meanwhile, our model effectively addresses the bilingual paraphrase identification problem and significantly outperforms previous approaches.
We study numerically the spectrum and eigenstate properties of the Google matrix of various examples of directed networks such as vocabulary networks of dictionaries and university World Wide Web networks. The spectra have gapless structure in the vicinity of the maximal eigenvalue for Google damping parameter $alpha$ equal to unity. The vocabulary networks have relatively homogeneous spectral density, while university networks have pronounced spectral structures which change from one university to another, reflecting specific properties of the networks. We also determine specific properties of eigenstates of the Google matrix, including the PageRank. The fidelity of the PageRank is proposed as a new characterization of its stability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا