Do you want to publish a course? Click here

Specifics of formation tax revenues and ways to improve it in Georgia

93   0   0.0 ( 0 )
 Added by George Abuselidze
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

In the research there is reviewed the peculiarities of the formation of tax revenues of the state budget, analysis of the recent past and present periods of tax system in Georgia, there is reviewed the influence of existing factors on the revenues, as well as the role and the place of direct and indirect taxes in the state budget revenues. In addition, the measures of stimulating action on formation of tax revenues and their impact on the state budget revenues are established. At the final stage, there are examples of foreign developed countries, where the tax system is perfectly developed, where various stimulating measures are successfully stimulating and consequently it promotes mobilization of the amount of money required in the state budget. The exchange of foreign experience is very important for Georgia, the existing tax model that is based on foreign experience is greatly successful. For the formation of tax policy, it is necessary to take into consideration all the factors affecting on it, a complex analysis of the tax system and the steps that will be really useful and perspective for our country.



rate research

Read More

We develop a model of tax evasion based on the Ising model. We augment the model using an appropriate enforcement mechanism that may allow policy makers to curb tax evasion. With a certain probability tax evaders are subject to an audit. If they get caught they behave honestly for a certain number of periods. Simulating the model for a range of parameter combinations, we show that tax evasion may be controlled effectively by using punishment as an enforcement mechanism.
Dense retrieval has been shown to be effective for retrieving relevant documents for Open Domain QA, surpassing popular sparse retrieval methods like BM25. REALM (Guu et al., 2020) is an end-to-end dense retrieval system that relies on MLM based pretraining for improved downstream QA efficiency across multiple datasets. We study the finetuning of REALM on various QA tasks and explore the limits of various hyperparameter and supervision choices. We find that REALM was significantly undertrained when finetuning and simple improvements in the training, supervision, and inference setups can significantly benefit QA results and exceed the performance of other models published post it. Our best model, REALM++, incorporates all the best working findings and achieves significant QA accuracy improvements over baselines (~5.5% absolute accuracy) without any model design changes. Additionally, REALM++ matches the performance of large Open Domain QA models which have 3x more parameters demonstrating the efficiency of the setup.
A dynamic agent model is introduced with an annual random wealth multiplicative process followed by taxes paid according to a linear wealth-dependent tax rate. If poor agents pay higher tax rates than rich agents, eventually all wealth becomes concentrated in the hands of a single agent. By contrast, if poor agents are subject to lower tax rates, the economic collective process continues forever.
Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers and scientists to assess the quality whether particular pieces of software are ready for use in research.
A sequence-to-sequence learning with neural networks has empirically proven to be an effective framework for Chinese Spelling Correction (CSC), which takes a sentence with some spelling errors as input and outputs the corrected one. However, CSC models may fail to correct spelling errors covered by the confusion sets, and also will encounter unseen ones. We propose a method, which continually identifies the weak spots of a model to generate more valuable training instances, and apply a task-specific pre-training strategy to enhance the model. The generated adversarial examples are gradually added to the training set. Experimental results show that such an adversarial training method combined with the pretraining strategy can improve both the generalization and robustness of multiple CSC models across three different datasets, achieving stateof-the-art performance for CSC task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا