Do you want to publish a course? Click here

Lossy Quantum Defect Theory of Ultracold Molecular Collisions

161   0   0.0 ( 0 )
 Added by Tijs Karman
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider losses in collisions of ultracold molecules described by a simple statistical short-range model that explicitly accounts for the limited lifetime of classically chaotic collision complexes. This confirms that thermally sampling many isolated resonances leads to a loss cross section equal to the elastic cross section derived by Mayle et al. [Phys. Rev. A 85, 062712 (2012)], and this makes precise the conditions under which this is the case. Surprisingly, we find that the loss is nonuniversal. We also consider the case that loss broadens the short-range resonances to the point that they become overlapping. The overlapping resonances can be treated statistically even if the resonances are sparse compared to $k_BT$, which may be the case for many molecules. The overlap results in Ericson fluctuations which yield a nonuniversal short-range boundary condition that is independent of energy over a range much wider than is sampled thermally. Deviations of experimental loss rates from the present theory beyond statistical fluctuations and the dependence on a background phase shift are interpreted as non-chaotic dynamics of short-range collision complexes.

rate research

Read More

We show that quantum interference-based coherent control is a highly efficient tool for tuning ultracold molecular collision dynamics, and is free from the limitations of commonly used methods that rely on external electromagnetic fields. By varying {the relative populations and} phases of an initial coherent superpositions of degenerate molecular states, we demonstrate complete coherent control over integral scattering cross sections in the ultracold $s$-wave regime of both the initial and final collision channels. The proposed control methodology is applied to ultracold O$_2$~+~O$_2$ collisions, showing extensive control over $s$-wave spin-exchange cross sections and product branching ratios over many orders of magnitude.
Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory models for the singlet and triplet S, P, D and F states of strontium based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series perturbers. Comparison between the predictions of the new models and those of previous empirical and emph{ab initio} studies reveals good agreement with most series, however some discrepancies are highlighted. Using the multichannel quantum defect theory wave functions derived from our models we calculate other observables such as Lande $g_J$-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.
We study the behavior of the Eisenbud-Wigner collisional time delay around Feshbach resonances in cold and ultracold atomic and molecular collisions. We carry out coupled-channels scattering calculations on ultracold Rb and Cs collisions. In the low-energy limit, the time delay is proportional to the scattering length, so exhibits a pole as a function of applied field. At high energy, it exhibits a Lorentzian peak as a function of either energy or field. For narrow resonances, the crossover between these two regimes occurs at an energy proportional to the square of the resonance strength parameter $s_textrm{res}$. For wider resonances, the behavior is more complicated and we present an analysis in terms of multichannel quantum defect theory.
We present a formalism for cold and ultracold atom-diatom chemical reactions that combines a quantum close-coupling method at short-range with quantum defect theory at long-range. The method yields full state-to-state rovibrationally resolved cross sections as in standard close-coupling (CC) calculations but at a considerably less computational expense. This hybrid approach exploits the simplicity of MQDT while treating the short-range interaction explicitly using quantum CC calculations. The method, demonstrated for D+H$_2to$ HD+H collisions with rovibrational quantum state resolution of the HD product, is shown to be accurate for a wide range of collision energies and initial conditions. The hybrid CC-MQDT formalism may provide an alternative approach to full CC calculations for cold and ultracold reactions.
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunneling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا