We present a formalism for cold and ultracold atom-diatom chemical reactions that combines a quantum close-coupling method at short-range with quantum defect theory at long-range. The method yields full state-to-state rovibrationally resolved cross sections as in standard close-coupling (CC) calculations but at a considerably less computational expense. This hybrid approach exploits the simplicity of MQDT while treating the short-range interaction explicitly using quantum CC calculations. The method, demonstrated for D+H$_2to$ HD+H collisions with rovibrational quantum state resolution of the HD product, is shown to be accurate for a wide range of collision energies and initial conditions. The hybrid CC-MQDT formalism may provide an alternative approach to full CC calculations for cold and ultracold reactions.
We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correlated electrons. We build on lattice density-functional theory for the Hubbard model by deriving Kohn-Sham equations for a reduced then full quantum chemistry Hamiltonian, and demonstrate the method on the potential energy curves for the challenging problem of modelling elongating bonds in a linear chain of six hydrogen atoms. Here the accuracy of the Bethe-ansatz local-density approximation is tested for this quantum chemistry system and we find that, despite this approximate functional being designed for the Hubbard model, the shapes of the potential curves generally agree with the full configuration interaction results. Although there is a discrepancy for very stretched bonds, this is lower than when using standard density-functional theory with the local-density approximation.
Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory models for the singlet and triplet S, P, D and F states of strontium based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series perturbers. Comparison between the predictions of the new models and those of previous empirical and emph{ab initio} studies reveals good agreement with most series, however some discrepancies are highlighted. Using the multichannel quantum defect theory wave functions derived from our models we calculate other observables such as Lande $g_J$-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.
We consider losses in collisions of ultracold molecules described by a simple statistical short-range model that explicitly accounts for the limited lifetime of classically chaotic collision complexes. This confirms that thermally sampling many isolated resonances leads to a loss cross section equal to the elastic cross section derived by Mayle et al. [Phys. Rev. A 85, 062712 (2012)], and this makes precise the conditions under which this is the case. Surprisingly, we find that the loss is nonuniversal. We also consider the case that loss broadens the short-range resonances to the point that they become overlapping. The overlapping resonances can be treated statistically even if the resonances are sparse compared to $k_BT$, which may be the case for many molecules. The overlap results in Ericson fluctuations which yield a nonuniversal short-range boundary condition that is independent of energy over a range much wider than is sampled thermally. Deviations of experimental loss rates from the present theory beyond statistical fluctuations and the dependence on a background phase shift are interpreted as non-chaotic dynamics of short-range collision complexes.
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hydrogen and lithium dimers, comparable to simulations requiring twenty or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.
We present a mean field theory for excited states that is broadly analogous to ground state Hartree-Fock theory. Like Hartree-Fock, our approach is deterministic, state-specific, applies a variational principle to a minimally correlated ansatz, produces energy stationary points, relaxes the orbital basis, has a Fock-build cost-scaling, and can serve as the foundation for correlation methods such as perturbation theory and coupled cluster theory. To emphasize this last point, we pair our mean field approach with an excited state analogue of second order Moller-Plesset theory and demonstrate that in water, formaldehyde, neon, and stretched lithium fluoride, the resulting accuracy far exceeds that of configuration interaction singles and rivals that of equation of motion coupled cluster.