Do you want to publish a course? Click here

Heart Sound Classification Considering Additive Noise and Convolutional Distortion

96   0   0.0 ( 0 )
 Added by Taufiq Hasan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cardiac auscultation is an essential point-of-care method used for the early diagnosis of heart diseases. Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation. This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound. We first mathematically analyze the effect of additive and convolutional noise on short-term filterbank-based features and a Convolutional Neural Network (CNN) layer. Based on the analysis, we propose a combination of linear and logarithmic spectrogram-image features. These 2D features are provided as input to a residual CNN network (ResNet) for heart sound abnormality detection. Experimental validation is performed on an open-access heart sound abnormality detection dataset involving noisy recordings obtained from multiple stethoscope sensors. The proposed method achieves significantly improved results compared to the conventional approaches, with an area under the ROC (receiver operating characteristics) curve (AUC) of 91.36%, F-1 score of 84.09%, and Macc (mean of sensitivity and specificity) of 85.08%. We also show that the proposed method shows the best mean accuracy across different source domains including stethoscope and noise variability, demonstrating its effectiveness in different recording conditions. The proposed combination of linear and logarithmic features along with the ResNet classifier effectively minimizes the impact of background noise and sensor variability for classifying phonocardiogram (PCG) signals. The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.



rate research

Read More

Cardiovascular diseases are the leading cause of deaths and severely threaten human health in daily life. On the one hand, there have been dramatically increasing demands from both the clinical practice and the smart home application for monitoring the heart status of subjects suffering from chronic cardiovascular diseases. On the other hand, experienced physicians who can perform an efficient auscultation are still lacking in terms of number. Automatic heart sound classification leveraging the power of advanced signal processing and machine learning technologies has shown encouraging results. Nevertheless, human hand-crafted features are expensive and time-consuming. To this end, we propose a novel deep representation learning method with an attention mechanism for heart sound classification. In this paradigm, high-level representations are learnt automatically from the recorded heart sound data. Particularly, a global attention pooling layer improves the performance of the learnt representations by estimating the contribution of each unit in feature maps. The Heart Sounds Shenzhen (HSS) corpus (170 subjects involved) is used to validate the proposed method. Experimental results validate that, our approach can achieve an unweighted average recall of 51.2% for classifying three categories of heart sounds, i. e., normal, mild, and moderate/severe annotated by cardiologists with the help of Echocardiography.
In this work, we present the development of a new database, namely Sound Localization and Classification (SLoClas) corpus, for studying and analyzing sound localization and classification. The corpus contains a total of 23.27 hours of data recorded using a 4-channel microphone array. 10 classes of sounds are played over a loudspeaker at 1.5 meters distance from the array by varying the Direction-of-Arrival (DoA) from 1 degree to 360 degree at an interval of 5 degree. To facilitate the study of noise robustness, 6 types of outdoor noise are recorded at 4 DoAs, using the same devices. Moreover, we propose a baseline method, namely Sound Localization and Classification Network (SLCnet) and present the experimental results and analysis conducted on the collected SLoClas database. We achieve the accuracy of 95.21% and 80.01% for sound localization and classification, respectively. We publicly release this database and the source code for research purpose.
An anomalous sound detection system to detect unknown anomalous sounds usually needs to be built using only normal sound data. Moreover, it is desirable to improve the system by effectively using a small amount of anomalous sound data, which will be accumulated through the systems operation. As one of the methods to meet these requirements, we focus on a binary classification model that is developed by using not only normal data but also outlier data in the other domains as pseudo-anomalous sound data, which can be easily updated by using anomalous data. In this paper, we implement a new loss function based on metric learning to learn the distance relationship from each class centroid in feature space for the binary classification model. The proposed multi-task learning of the binary classification and the metric learning makes it possible to build the feature space where the within-class variance is minimized and the between-class variance is maximized while keeping normal and anomalous classes linearly separable. We also investigate the effectiveness of additionally using anomalous sound data for further improving the binary classification model. Our results showed that multi-task learning using binary classification and metric learning to consider the distance from each class centroid in the feature space is effective, and performance can be significantly improved by using even a small amount of anomalous data during training.
113 - Alireza Nasiri , , Jianjun Hu 2021
Environmental Sound Classification (ESC) is a challenging field of research in non-speech audio processing. Most of current research in ESC focuses on designing deep models with special architectures tailored for specific audio datasets, which usually cannot exploit the intrinsic patterns in the data. However recent studies have surprisingly shown that transfer learning from models trained on ImageNet is a very effective technique in ESC. Herein, we propose SoundCLR, a supervised contrastive learning method for effective environment sound classification with state-of-the-art performance, which works by learning representations that disentangle the samples of each class from those of other classes. Our deep network models are trained by combining a contrastive loss that contributes to a better probability output by the classification layer with a cross-entropy loss on the output of the classifier layer to map the samples to their respective 1-hot encoded labels. Due to the comparatively small sizes of the available environmental sound datasets, we propose and exploit a transfer learning and strong data augmentation pipeline and apply the augmentations on both the sound signals and their log-mel spectrograms before inputting them to the model. Our experiments show that our masking based augmentation technique on the log-mel spectrograms can significantly improve the recognition performance. Our extensive benchmark experiments show that our hybrid deep network models trained with combined contrastive and cross-entropy loss achieved the state-of-the-art performance on three benchmark datasets ESC-10, ESC-50, and US8K with validation accuracies of 99.75%, 93.4%, and 86.49% respectively. The ensemble version of our models also outperforms other top ensemble methods. The code is available at https://github.com/alireza-nasiri/SoundCLR.
Abdominal auscultation is a convenient, safe and inexpensive method to assess bowel conditions, which is essential in neonatal care. It helps early detection of neonatal bowel dysfunctions and allows timely intervention. This paper presents a neonatal bowel sound detection method to assist the auscultation. Specifically, a Convolutional Neural Network (CNN) is proposed to classify peristalsis and non-peristalsis sounds. The classification is then optimized using a Laplace Hidden Semi-Markov Model (HSMM). The proposed method is validated on abdominal sounds from 49 newborn infants admitted to our tertiary Neonatal Intensive Care Unit (NICU). The results show that the method can effectively detect bowel sounds with accuracy and area under curve (AUC) score being 89.81% and 83.96% respectively, outperforming 13 baseline methods. Furthermore, the proposed Laplace HSMM refinement strategy is proven capable to enhance other bowel sound detection models. The outcomes of this work have the potential to facilitate future telehealth applications for neonatal care. The source code of our work can be found at: https://bitbucket.org/chirudeakin/neonatal-bowel-sound-classification/

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا