Do you want to publish a course? Click here

Generalising Kapranovs Theorem For Tropical Geometry Over Hyperfields

287   0   0.0 ( 0 )
 Added by James Maxwell Mr
 Publication date 2021
  fields
and research's language is English
 Authors James Maxwell




Ask ChatGPT about the research

Kapranovs theorem is a foundational result in tropical geometry. It states that the set of tropicalisations of points on a hypersurface coincides precisely with the tropical variety of the tropicalisation of the defining polynomial. The aim of this paper is to generalise Kapranovs theorem, replacing the role of a valuation map, from a field to the real numbers union negative infinity, with a more general class of hyperfield homomorphisms, whose target is the tropical hyperfield and satisfy a relative algebraic closure condition. To provide an example of such a hyperfield homomorphism, the map from the complex tropical hyperfield to the tropical hyperfield is investigated. There is a brief outline of sufficient conditions for a hyperfield homomorphism to satisfy the relative algebraic closure condition.



rate research

Read More

The title refers to the nilcommutative or $NC$-schemes introduced by M. Kapranov in math.AG/9802041. The latter are noncommutative nilpotent thickenings of commutative schemes. We consider also the parallel theory of nil-Poisson or $NP$-schemes, which are nilpotent thickenings of commutative schemes in the category of Poisson schemes. We study several variants of de Rham cohomology for $NC$- and $NP$-schemes. The variants include nilcommutative and nil-Poiss
We investigate valuated matroids with an additional algebraic structure on their residue matroids. We encode the structure in terms of representability over stringent hyperfields. A hyperfield $H$ is {em stringent} if $aboxplus b$ is a singleton unless $a=-b$, for all $a,bin H$. By a construction of Marc Krasner, each valued field gives rise to a stringent hyperfield. We show that if $H$ is a stringent skew hyperfield, then the vectors of any weak matroid over $H$ are orthogonal to its covectors, and we deduce that weak matroids over $H$ are strong matroids over $H$. Also, we present vector axioms for matroids over stringent skew hyperfields which generalize the vector axioms for oriented matroids and valuated matroids.
The purpose of this book is to build up the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for the researches of arithmetic geometry in several directions.
We enumerate complex curves on toric surfaces of any given degree and genus, having a single cusp and nodes as their singularities, and matching appropriately many point constraints. The solution is obtained via tropical enumerative geometry. The same technique applies to enumeration of real plane cuspidal curves: We show that, for any fixed $rge1$ and $dge2r+3$, there exists a generic real $2r$-dimensional linear family of plane curves of degree $d$ in which the number of real $r$-cuspidal curves is asymptotically comparable with the total number of complex $r$-cuspidal curves in the family, as $dtoinfty$.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا