The purpose of this book is to build up the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for the researches of arithmetic geometry in several directions.
We establish an arithmetic intersection theory in the framework of Arakelov geometry over adelic curves. To each projective scheme over an adelic curve, we associate a multi-homogenous form on the group of adelic Cartier divisors, which can be written as an integral of local intersection numbers along the adelic curve. The integrability of the local intersection number is justified by using the theory of resultants.
This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesnt require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized rings and schemes, which include classical rings and schemes together with exotic objects such as F_1 (field with one element), Z_infty (real integers), T (tropical numbers) etc., thus providing a systematic way of studying such objects. This theory of generalized rings and schemes is developed up to construction of algebraic K-theory, intersection theory and Chern classes. Then existence of Arakelov models of algebraic varieties over Q is shown, and our general results are applied to such models.
In this article, we construct a $theta$-density for the global sections of ample Hermitian line bundles on a projective arithmetic variety. We show that this density has similar behaviour to the usual density in the Arakelov geometric setting, where only global sections of norm smaller than $1$ are considered. In particular, we prove the analogue by $theta$-density of two Bertini kind theorems, on irreducibility and regularity respectively.
In this paper we study local-global principles for tori over semi-global fields, which are one variable function fields over complete discretely valued fields. In particular, we show that for principal homogeneous spaces for tori over the underlying discrete valuation ring, the obstruction to a local-global principle with respect to discrete valuations can be computed using methods coming from patching. We give a sufficient condition for the vanishing of the obstruction, as well as examples were the obstruction is nontrivial or even infinite. A major tool is the notion of a flasque resolution of a torus.
We prove equidistribution of Weierstrass points on Berkovich curves. Let $X$ be a smooth proper curve of positive genus over a complete algebraically closed non-Archimedean field $K$ of equal characteristic zero with a non-trivial valuation. Let $L$ be a line bundle of positive degree on $X$. The Weierstrass points of powers of $L$ are equidistributed according to the Zhang-Arakelov measure on the analytification $X^{an}$. This provides a non-Archimedean analogue of a theorem of Mumford and Neeman. Along the way we provide a description of the reduction of Weierstrass points, answering a question of Eisenbud and Harris.