No Arabic abstract
The ESAs Mars Express solar corona experiments were performed at two solar conjunctions in the years 2015 and 2017 by a number of radio telescopes in the European VLBI Network. This paper presents the methods to measure the frequency and phase fluctuations of the spacecraft radio signal, and the applications to study the characteristics of the plasma turbulence effects on the signal at a single station and at multiple stations via cross-correlation. The power spectra of the frequency fluctuations observed between 4.9 and 76.3 $rm R_{s}$ have a power-law shape close to a Kolmogorov spectrum over the frequency interval $ u_{lo}< u < u_{up}$, where the nominal value of $ u_{lo}$ is set to 3 mHz and $ u_{up}$ is in the range of 0.03 $sim$ 0.15 Hz. The RMS of the frequency fluctuations is presented as a function of the heliocentric distance. Furthermore, we analyse the variations of the electron column density fluctuations at solar offsets 4.9 $rm{R_{s}}$ and 9.9 $rm{R_{s}}$ and the cross-correlation products between the VLBI stations. The power density of the differential fluctuations between different stations decreases at $ u < 0.01$ Hz. Finally, the fast flow speeds of solar wind $>700$ $rm{km~s^{-1}}$ are derived from the cross-correlation of frequency fluctuations at $ u < 0.01$ Hz. The fast flow speeds of solar wind correspond to the high heliolatitude of the coronal region that the radio rays passed. The VLBI observations and analysis methods can be used to study the electron column density fluctuations and the turbulence at multiple spatial points in the inner solar wind by providing multiple lines of sight between the Earth and the spacecraft.
The Mars Express (MEX) mission has been successfully operated around Mars since 2004. Among many results, MEX has provided some of the most accurate astrometric data of the two Mars moons, Phobos and Deimos. In this work we present new ephemerides of Mars moons benefitting from all previously published astrometric data to the most recent MEX SRC data. All in all, observations from 1877 until 2018 and including spacecraft measurements from Mariner 9 to MEX were included. Assuming a homogeneous interior, we fitted Phobos forced libration amplitude simultaneously with the Martian tidal k2/Q ratio and the initial state of the moons. Our solution of the physical libration 1.09 +/- 0.01 degrees deviates notably from the homogeneous solution. But considering the very low error bar, this may essentially suggest the necessity to consider higher order harmonics, with an improved rotation model, in the future. While most data could be successfully fitted, we found a disagreement between the Mars Reconnaissance Orbiter and the Mars Express astrometric data at the kilometer level probably associated with a biased phase correction. The present solution precision is expected at the level of a few hundreds of meters for Phobos and several hundreds of meters for Deimos for the coming years. The real accuracy of our new ephemerides will have to be confirmed by confrontation with independent observational means.
The Los Alamos National Laboratory designed and built Mars Odyssey Neutron Spectrometer (MONS) has been in excellent health operating from February 2002 to the present. MONS measures the neutron leakage albedo from galactic cosmic ray bombardment of Mars. These signals can indicate the presence of near-surface water deposits on Mars, and can also be used to study properties of the seasonal polar CO$_2$ ice caps. This work outlines a new analysis of the MONS data that results in new and extended time-series maps of MONS thermal and epithermal neutron data. The new data are compared to previous publications on the MONS instrument. We then present preliminary results studying the inter-annual variability in the polar regions of Mars based on 8 Mars-Years of MONS data from the new dataset.
The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agencys Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.
As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.
Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASAs Deep Space Network (DSN), ESAs Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESAs Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments.