No Arabic abstract
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now been cooled to a few microkelvin and trapped for several seconds. This opens many possibilities for applications in quantum science and technology, controlled chemistry, and tests of fundamental physics. This article explains how molecules can be decelerated, cooled and trapped using laser light, reviews the progress made in recent years, and outlines some future applications.
Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ. Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with an alkali or alkaline earth chlorides, denoted XCln, can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCln and the Al:XCln molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCln precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.
We introduce a scheme for deep laser cooling of molecules based on robust dark states at zero velocity. By simulating this scheme, we show it to be a widely applicable method that can reach the recoil limit or below. We demonstrate and characterise the method experimentally, reaching a temperature of 5.4(7) $mu$K. We solve a general problem of measuring low temperatures for large clouds by rotating the phase-space distribution and then directly imaging the complete velocity distribution. Using the same phase-space rotation method, we rapidly compress the cloud. Applying the cooling method a second time, we compress both the position and velocity distributions.
We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer gas beam of YO. We generate a measurable flux of YO below 10~m/s, directly loadable into a three-dimensional magneto-optical trap. This technique opens the door for laser cooling of molecules with more complex structure.
We report a generally applicable computational and experimental approach to determine vibronic branching ratios in linear polyatomic molecules to the $10^{-5}$ level, including for nominally symmetry forbidden transitions. These methods are demonstrated in CaOH and YbOH, showing approximately two orders of magnitude improved sensitivity compared with the previous state of the art. Knowledge of branching ratios at this level is needed for the successful deep laser cooling of a broad range of molecular species.
The last few years have seen rapid progress in the application of laser cooling to molecules. In this review, we examine what kinds of molecules can be laser cooled, how to design a suitable cooling scheme, and how the cooling can be understood and modelled. We review recent work on laser slowing, magneto-optical trapping, sub-Doppler cooling, and the confinement of molecules in conservative traps, with a focus on the fundamental principles of each technique. Finally, we explore some of the exciting applications of laser-cooled molecules that should be accessible in the near term.