No Arabic abstract
Understanding the relationship between symmetry breaking, system properties, and instabilities has been a problem of longstanding scientific interest. Symmetry-breaking instabilities underlie the formation of important patterns in driven systems, but there are many instances in which such instabilities are undesirable. Using parametric resonance as a model process, here we show that a range of states that would be destabilized by symmetry-breaking instabilities can be preserved and stabilized by the introduction of suitable system asymmetry. Because symmetric states are spatially homogeneous and asymmetric systems are spatially heterogeneous, we refer to this effect as heterogeneity-stabilized homogeneity. We illustrate this effect theoretically using driven pendulum array models and demonstrate it experimentally using Faraday wave instabilities. Our results have potential implications for the mitigation of instabilities in engineered systems and the emergence of homogeneous states in natural systems with inherent heterogeneities.
We provide some analytical tests of the density of states estimation from the localization landscape approach of Ref. [Phys. Rev. Lett. 116, 056602 (2016)]. We consider two different solvable models for which we obtain the distribution of the landscape function and argue that the precise spectral singularities are not reproduced by the estimation of the landscape approach.
The entropy stabilized oxide Mg$_{0.2}$Co$_{0.2}$Ni$_{0.2}$Cu$_{0.2}$Zn$_{0.2}$O exhibits antiferromagnetic order and magnetic excitations, as revealed by recent neutron scattering experiments. This observation raises the question of the nature of spin wave excitations in such disordered systems. Here, we investigate theoretically the magnetic ground state and the spin-wave excitations using linear spin-wave theory in combination with the supercell approximation to take into account the extreme disorder in this magnetic system. We find that the experimentally observed antiferromagnetic structure can be stabilized by a rhombohedral distortion together with large second nearest neighbor interactions. Our calculations show that the spin-wave spectrum consists of a well-defined low-energy coherent spectrum in the background of an incoherent continuum that extends to higher energies.
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has non-trivial correlations and is synchronized with the drive. The O(N) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.
We report results of molecular dynamics simulations of a binary Lennard-Jones system at zero pressure in the undercooled liquid and glassy states. We first follow the evolution of diffusivity and dynamic heterogeneity with temperature and show their correlation. In a second step we follow the ageing of a quenched glass. As diffusivity decreases with ageing, heterogeneity increases. We conclude that the heterogeneity is a property of the inherent diffusion of the relaxed state. The variations with aging time can be explained by annealing of quenched defect structures. This annealing has the same decay constants for both diffusivity and heterogeneity of both components.
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coarse grained observables and decomposing the fluctuations of these observables into transverse components, which are associated with the postulated time-fluctuation soft modes, and a longitudinal component, which represents the rest of the fluctuations. Our test is performed on data obtained in simulations of four models of structural glasses. As the hypothesis predicts, we find that the time reparametrization fluctuations become increasingly dominant as temperature is lowered and timescales are increased. More specifically, the ratio between the strengths of the transverse fluctuations and the longitudinal fluctuations grows as a function of the dynamical susceptibility, chi 4, which represents the strength of the dynamical heterogeneity; and the correlation volumes for the transverse fluctuations are approximately proportional to those for the dynamical heterogeneity, while the correlation volumes for the longitudinal fluctuations remain small and approximately constant.