No Arabic abstract
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coarse grained observables and decomposing the fluctuations of these observables into transverse components, which are associated with the postulated time-fluctuation soft modes, and a longitudinal component, which represents the rest of the fluctuations. Our test is performed on data obtained in simulations of four models of structural glasses. As the hypothesis predicts, we find that the time reparametrization fluctuations become increasingly dominant as temperature is lowered and timescales are increased. More specifically, the ratio between the strengths of the transverse fluctuations and the longitudinal fluctuations grows as a function of the dynamical susceptibility, chi 4, which represents the strength of the dynamical heterogeneity; and the correlation volumes for the transverse fluctuations are approximately proportional to those for the dynamical heterogeneity, while the correlation volumes for the longitudinal fluctuations remain small and approximately constant.
Dynamical heterogeneities -- strong fluctuations near the glass transition -- are believed to be crucial to explain much of the glass transition phenomenology. One possible hypothesis for their origin is that they emerge from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. To test this hypothesis, we use numerical simulation data from four glass-forming models to construct coarse grained observables that probe the dynamical heterogeneity, and decompose the fluctuations of these observables into two transverse components associated with the postulated time-fluctuation soft modes and a longitudinal component unrelated to them. We find that as temperature is lowered and timescales are increased, the time reparametrization fluctuations become increasingly dominant, and that their correlation volumes grow together with the correlation volumes of the dynamical heterogeneities, while the correlation volumes for longitudinal fluctuations remain small.
As a guideline for experimental tests of the ideal glass transition (Random Pinning Glass Transition, RPGT) that shall be induced in a system by randomly pinning particles, we performed first-principle computations within the Hypernetted chain approximation and numerical simulations of a Hard Sphere model of glass-former. We obtain confirmation of the expected enhancement of glassy behaviour under the procedure of random pinning, which consists in freezing a fraction $c$ of randomly chosen particles in the positions they have in an equilibrium configuration. We present the analytical phase diagram as a function of $c$ and of the packing fraction $phi$, showing a line of RPGT ending in a critical point. We also obtain first microscopic results on cooperative length-scales characterizing medium-range amorphous order in Hard Spere glasses and indirect quantitative information on a key thermodynamic quantity defined in proximity of ideal glass transitions, the amorphous surface tension. Finally, we present numerical results of pair correlation functions able to differentiate the liquid and the glass phases, as predicted by the analytic computations.
We carry out a detailed deuterium NMR study of local nematic ordering in polydomain nematic elastomers. This system has a close analogy to the random-anisotropy spin glass. We find that, in spite of the quadrupolar nematic symmetry in 3-dimensions requiring a first-order transition, the order parameter in the quenched ``nematic glass emerges via a continuous phase transition. In addition, by a careful analysis of the NMR line shape, we deduce that the local director fluctuations grow in a critical manner around the transition point. This could be the experimental evidence for the Aizenman-Wehr theorem about the quenched impurities changing the order of discontinuous transition.
We investigate the quantum dynamics of Two-Level Systems (TLS) in glasses at low temperatures (1 K and below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, we derive analytically the explicit form of the interactions among TLSs, and of the dissipation terms. We find that the unitary dynamics of the system shows clear signatures of Many-Body Localization physics. We study numerically the time behavior of the concurrence, which measures pairwise entanglement also in non-isolated systems, and show that it presents a power-law decay both in the absence and in the presence of dissipation, if the latter is not too large. These features can be ascribed to the strong, long-tailed disorder characterizing the distributions of the model parameters. Our findings show that assuming ergodicity when discussing TLS physics might not be justified for all kinds of experiments on low-temperature glasses.
This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, both for their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these non-linear susceptibilities. We show that the framework proposed by two of us [BB, Phys. Rev. B 72, 064204 (2005)], where the growth of non-linear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models, and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments which should deepen our understanding of glasses.