Do you want to publish a course? Click here

Constraining CP-phases in SUSY: an interplay of muon/electron $g-2$ and electron EDM

159   0   0.0 ( 0 )
 Added by Song Li
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The minimal supersymmetric standard model (MSSM) with complex parameters can contribute sizably to muon/electron anomalous magnetic dipole momemnt ($g-2$) and electric dipole moment (EDM). The electron $g-2$ interplays with electron EDM; the muon $g-2$ can also interplay with electron EDM assuming the universality between smuon and selectron masses, either of which can constrain the relevant CP-phases in the MSSM. In this work, we first use such an interplay to derive an approximate analytical upper limit on the relevant CP-phase. Then we extensively scan the parameter space to obtain more accurate upper limits. We obtain the following observations: (i) The muon $g-2$ in the $2sigma$ range combined with the electron EDM upper limit (assuming the universality between smuon and selectron masses) typically constrains the relevant CP-phase under $1.9times 10^{-5} (text{rad})$; (ii) The electron $g-2$ in the $2sigma$ range (Berkeley) interplays with the electron EDM upper limit (without assuming the universality between smuon and selectron masses) constrains the relevant CP-phase under $3.9times 10^{-6}(text{rad})$ (also requiring muon $g-2$ in the allowed $2sigma$ range). We also find some special cancellations in the parameter space which can relax the constraints by a couple of orders. Such stringent limits on CP-phases may pose a challenge for model building of SUSY, i.e., how to naturally suppress these phases.

rate research

Read More

191 - Song Li , Yang Xiao , Jin Min Yang 2021
According to the FNAL+BNL measurements for the muon $g-2$ and the Berkeley $^{133}$Cs measurement for the electron $g-2$, the SM prediction for the muon (electron) $g-2$ is $4.2sigma$ ($2.4sigma$) below (above) the experimental value. A joint explanation requires a positive contribution to the muon $g-2$ and a negative contribution to the electron $g-2$. In this work we explore the possibility of such a joint explanation in the minimal supersymmetric standard model (MSSM). Assuming no universality between smuon and selectron soft masses, we find out a part of parameter space for a joint explanation of muon and electron $g-2$ anomalies at $2sigma$ level. This part of parameter space can survive the LHC and LEP constraints, but gives an over-abundance for the dark matter if the bino-like lightest neutralino is assumed to be the dark matter candidate. With the assumption that the dark matter candidate is a superWIMP (say a pseudo-goldstino in multi-sector SUSY breaking scenarios, whose mass can be as light as GeV and produced from the late-dacay of the thermally freeze-out lightest neutralino), the dark matter problem can be avoided. So, the MSSM may give a joint explanation for the muon and electron $g-2$ anomalies at $2sigma$ level (the muon $g-2$ anomaly can be ameliorated to $1sigma$).
Recent precise measurement of the electron anomalous magnetic moment (AMM) adds to the longstanding tension of the muon AMM and together strongly point towards physics beyond the Standard Model (BSM). In this work, we propose a solution to both anomalies in an economical fashion via a light scalar that emerges from a second Higgs doublet and resides in the $mathcal{O}(10)$-MeV to $mathcal{O}(1)$-GeV mass range yielding the right sizes and signs for these deviations due to one-loop and two-loop dominance for the muon and the electron, respectively. A scalar of this type is subject to a number of various experimental constraints, however, as we show, it can remain sufficiently light by evading all experimental bounds and has the great potential to be discovered in the near-future low-energy experiments. The analysis provided here is equally applicable to any BSM scenario for which a light scalar is allowed to have sizable flavor-diagonal couplings to the charged leptons. In addition to the light scalar, our theory predicts the existence of a nearly degenerate charged scalar and a pseudoscalar, which have masses of the order of the electroweak scale. We analyze possible ways to probe new-physics signals at colliders and find that this scenario can be tested at the LHC by looking at the novel process $pp to H^pm H^pm jj to l^pm l^pm j j + {E!!!!/}_{T}$ via same-sign pair production of charged Higgs bosons.
68 - Motoi Endo , Wen Yin 2019
We propose a SUSY scenario to explain the current electron and muon $g-2$ discrepancies without introducing lepton flavor mixings. Threshold corrections to the Yukawa couplings can enhance the electron $g-2$ and flip the sign of the SUSY contributions. The mechanism predicts a flavor-dependent slepton mass spectrum. We show that it is compatible with the Higgs mediation scenario.
We discuss gauge mediated supersymmetry breaking models which explain the observed muon anomalous magnetic moment and the Higgs boson mass simultaneously. The successful explanation requires the messenger sector which violates the relation motivated by the grand unification theory (GUT). The naive violation of the GUT relation, however, ends up with the CP problem. We propose a model in which the phases of the gaugino masses are aligned despite the violation of the GUT relation. We also consider a model which generates the $mu$-term and the additional Higgs soft masses squared without causing CP violation. As a result, we find a successful model which explains the muon anomalous magnetic moment and the Higgs boson mass. The model is also free from the CP, flavor-changing neutral current and the lepton flavor violation problems caused by the subdominant gravity mediation effects.
The CP violating two-Higgs doublet model of type-X may enhance significantly the electric and magnetic moment of leptons through two-loop Barr-Zee diagrams. We analyze the general parameter space of the type-X 2HDM consistent with the muon $g-2$ and the electron EDM measurements to show how strongly the CP violating parameter is constrained in the region explaining the muon $ g-2$ anomaly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا